اثرات زیرکشنده دینوتفوران روی فراسنجه‌های زیستی شته سبز گندم Schizaphis graminum و شکارگر آن Hippodamia variegata

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه حشره‌شناسی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

اثرات غلظت‌های زیرکشنده حشره‌کش دینوتفوران روی فراسنجه‌های زیستی شته سبز گندم و کفشدوزکHippodamia variegate Goeze در شرایط آزمایشگاهی (دمای 2±26 درجه سلسیوس، رطوبت نسبی 10±65 درصد، دوره نوری 8:16 ساعت روشنایی:تاریکی) بررسی شد. مقادیر LC50 نشان داد که سمیت دینوتفوران روی شته (219/75) بیش‌تر از کفشدوزک (747/4) است و در مقادیر LC10 و LC30 نیز همین‌طور بود. دوره نشوونمای پوره‌های شته در تیمارهای زیرکشنده افزایش یافت. طول عمر شته بالغ در تیمار LC30 کوتاه‌ترین (11/33روز) و دوره پیش تخم­ریزی بالغ  (APOP) و کل دوره پیش تخم­ریزی (TPOP) در غلظت LC30 به‌ترتیب کوتاه‌ترین (0/66 روز) و طولانی ­ترین (8/53روز) بودند. دینوتفوران در LC10 اثر معنی‌داری روی طول عمر حشرات کامل کفشدوزک نداشت. مقادیر APOP در LC10 و LC30 روی کفشدوزک تفاوت معنی‌داری نداشت، اما TPOP در LC30 نسبت به سایر تیمارها بالاتر بود. نرخ ذاتی افزایش جمعیت (r) شته از 0/374در شاهد به 0/219در LC30 و R0 از 47/37به 13/37کاهش یافت. با افزایش غلظت، زنده‌مانی ویژه سن- مرحله در شته کاهش یافت و در کفشدوزک، افرادی که با LC10 تیمار شده بودند، زنده‌مانی بیش‌تری نسبت به LC30 داشتند. نرخ زادآوری شته در غلظت‌های زیرکشنده کاهش یافت و بیش‌ترین مقدار نرخ زادآوری شکارگر در تیمار شاهد مشاهده شد. شاخص اثر کل نشان داد که دینوتفوران بر اساس گروه‌بندی IOBC برای هر دو غلظت زیرکشنده جزو ترکیبات بی‌خطر است. با توجه به نتایج، غلظت‌های زیرکشنده دینوتفوران می‌تواند در برنامه‌های مدیریت تلفیقی شته به همراه این کفشدوزک کاربرد داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Sublethal effects of dinotefuran on the biological parameters of the wheat aphid Schizaphis graminum and its predator Hippodamia variegata

نویسندگان [English]

  • Sajjad Fouladi Azar
  • Mehdi Gheibi
  • Shahram Hesami
  • Hadi Ostovan
Department of Entomology, Shi. C., Islamic Azad University, Shiraz, Iran
چکیده [English]

The effects of sublethal concentrations of the insecticide dinotefuran on the biological parameters of the wheat aphid and the ladybird Hippodamia variegate Goeze were investigated under laboratory conditions (temperature 26±2 °C, relative humidity 65±10%, photoperiod of 16:8 h L:D). The LC50 values indicated that the toxicity of dinotefuran on the aphid (219.75) is greater than on the ladybird (747.4), which also applies to the LC10 and LC30 values. The development period of aphid nymphs increased in the sublethal treatments. Adult aphid longevity was shortest in the LC30 treatment (11.33 days), and the adult pre-oviposition period (APOP) and total pre-oviposition period (TPOP) values at LC30 were the shortest (0.66 days) and the longest (8.53 days), respectively. Dinotefuran at LC10 had no significant effect on the lifespan of adult ladybird. APOP values at LC10 and LC30 did not differ significantly on ladybird, but TPOP at LC30 was higher than in the other treatments. Aphid's intrinsic rate of increase (r) decreased from 0.374 in the control to 0.219 in LC30 and R0 decreased from 47.37 to 13.37. With increasing concentration, age-stage-specific survival rate of the aphid declined, while in the ladybird, individuals treated with LC10 had higher survival than those at LC30. The reproductive rate of aphids decreased at sublethal concentrations, while the highest age-specific fecundity value (mx) for the predator was observed in the control group. The total effect index indicated that, according to IOBC classification, dinotefuran at both sublethal concentrations is harmless. Based on the findings, sublethal concentrations of dinotefuran can be used in integrated management programs for aphids in conjunction with the ladybird

کلیدواژه‌ها [English]

  • Bioassay
  • biological control
  • dinotefuran
  • sub-lethal effects
  • wheat aphid
Abd-Ella, A. A. (2015). Effect of several insecticides on pomegranate aphid, Aphis punicae (Passerini) (Homoptera: Aphididae) and its predators under field conditions. EPPO Bulletin, 45(1), 90-98. DOI: https://doi.org/10.1111/epp.12192
Aeinehchi, P., Naseri, B., Rafiee Dastjerdi, H., Nouri Ghanbalani, G., & Golizadeh, A. (2019). Lethal and sublethal effects of thiacloprid on Schizaphis graminum (Rondani) (Hemiptera: Aphididae) and its predator Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Toxin Reviews, 40(2), 1-11. DOI: https://doi.org/10.1080/15569543.2019.1677719
Alimohammadi, N., Samih, M., Izadi, H., & Shahidi Noghabi, Sh. (2014). Dta (evelopmental and biochemical effects of hexaflumuron and spirodiclofen on the ladybird beetle, Hippodamia variega Goeze) (Coleoptera: Coccinellidae). Journal of Crop Protection, 3(3), 335–344. DOI: https://doi.org/20.1001.1.22519041.2014.3.3.5.4    
Ayyanath, M. M. (2013). Effect of sublethal concentrations of imidacloprid and precocene on green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae): A study of hormesis at the gene, individual and population level. PhD. thesis, The University of Guelph.
Blackman, R. L., & Eastop, V. F. (2006). Aphids on the world’s herbaceous plants and shrubs. London: John Wiley & Sons publication.
Bühler, A., & Schweiger, R. (2024). Influence of previous infestation of wheat leaves and ears by Sitobion avenae on interaction with Rhopalosiphum padi. Insects, 15(11), 871. DOI: https://doi.org/10.3390/insects15110871
Chi, H., & Liu, H. (1985). Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 24, 225-240.
Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26-34.
Chi, H. (1990). Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology, 83, 1143-1150.
Chi, H. (2015). TWOSEX-MSChart: Computer program for age-stage, two-sex life table analysis. Retrieved from DOI: http://140.120.197.183/Ecology
Croft, B. A. (1990). Arthropod biological control agents and pesticides. (1st Edn.). John Wiley and Sons, New York.
De Bara, M. S., Pélissié, B., Streito, J. C., & Benoit, J. B. (2022). Insecticide resistance and management in the Neonicotinoid era: Insights from recent advances. Insects, 13(4), 311. DOI: https://doi.org/10.3390/insects13040311
Devorshak, C., & Roe, R. M. (1998). The role of esterases in insecticide resistance. Reviews in Toxicology, 2, 501-537.
Dou, Sh., Liu, B., Liu, Y., Zhang, J., & Lu, Y. (2023). Intraguild predation of Hippodamia variegata on aphid mummies in cotton field. Insects, 14(1), 81. DOI: https://doi.org/10.3390/insects14010081
Gaber, A. S., Abd-Ella, A. A., Abou-Elhangag, G. H., & Abdel-Rahman, Y. A. (2015). Field efficiency and selectivity effects of selected insecticides on cotton aphid, Aphis gossypii Glover (Homoptera: Aphididea) and its predators. Journal of Phytopathology and Pest Management, 2(1), 2-35.
Jafari, R. (2011). Biology of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae), on Aphis fabae scopoli (Hemiptera: Aphididae). Journal of Plant Protection Research, 51(2), 190-194. DOI: https://doi.org/10.2478/v10045-0011-0033-9
Johnson, M. W., & Tabashnik, B. E. (1999). Enhanced biological control through pesticide selectivity. In Bellows, T. S., & Fisher, T. W. (Eds.). Handbook of Biological Control: Principles and Applications. San Diego, CA: Academic Press. pp. 297–317.
Medeiros, R. S., Ramalho, F. S., Lemos, W. P., & Zanuncio, J. C. (2000). Age dependent fecundity and life fertility tables for Podisus nigrispinus Dallas (Hem.: pentatomidae). Journal of Applied Entomology, 124, 319-324.
Miao, J., Du, W., Z. B., Wu, Y. Q., Gong, Z. J., Jiang, Y. L., Duan, Y., Li, T., & Lei, C. L. (2013). Sublethal effects of four neonicotinoids on population growth and feeding behavior of the wheat aphid Sitobion avenae. Pest Management Science, 70, 55–59. DOI: https://doi.org/10.1002/ps.3523
Mingjing, Q., Zhaojun, H., Xinjun, X., & Lina, Y. (2003). Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pesticide Biochemistry and Physiology, 77, 99-105. DOI: https://doi.org/10.1016/j.pestbp.2003.09.003
Mohamed, H. T., Mohamed, I. A., Abou-Elhagag, G. H., & Saba, R. M. (2015). Toxicity and field persistence of thiamethoxam and dinotefuran against cabbage aphid, Brevicoryne brassica L. (Homoptera: Aphididae) under laboratory and field conditions. Journal of Phytopathology and Pest Management, 2(2), 20-26.
Munawar, I., Hossain, M. A., & Hussain, S. (2023). Field evaluation of indigenous plant extracts and entomopathogenic fungi against wheat aphids (Sitobion avenae). Trends in Applied Sciences, 2, 25–32. DOI: https://doi.org/10.5555/2023.2.0.25-32
Moscardini, V. F., Gontijo, P. C., Carvalho, G. A., de Oliveira, R. L., Maia, J. B., & Silva, F. F. (2013). Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hem.: Anthocoridae). Chemosphere, 92(5), 490-496. DOI: https://doi.org/10.1016/j.chemosphere.2013.01.111
Pervez, A., Awasthi, P., & Bozdoğan, H.  (2018). Demographic parameters of the predaceous ladybird, Hippodamia variegata (Goeze), on the aphid species, Aphis craccivora (Koch), reared on four host plants. Egyptian Journal of Biological Pest Control, 28(1), 1-6. DOI: https://doi.org/10.1186/s41938-018-0093-5
Rezaei, M., Talebi, K., Hosseininaveh, V., & Kavousi, A. (2006). Impacts of the pesticides imidacloprid, propargite and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays. Biocontrol, 52, 385–398. DOI: https://doi.org/10.1007/s10526-006-9036-2
Sabahi, Q., Talebi, K. H., Kavousi, A., & Sheikhi Garjan, A. (2010). Effects of imidacloprid, dichlorvos, pymetrozine and abamectin on life table parameters of the predatory bug, Orius albidipennis (Hemiptera: Anthocoridae). Journal of Entomological Society of Iran, 30(1), 1-11.
Saber, M., Hejazi, M. J., Kamali, K., & Moharramipour, S. (2005). Lethal and sublethal effects of fenitrothion and deltamethrin residues on the egg parasitoid Trissolcus grandis (Hymenoptera: Scelionidae). Journal of Economic Entomology, 98, 35-40. DOI: https://doi.org/10.1603/0022-0493-98.1.35
Sarkar, S. C., Milroy S. P., & Xu, W. (2023). Potential of variegated lady beetle Hippodamia variegata in management of invasive tomato potato psyllid Bactericera cockerelli. Pest Management Science, 79(2): 821-832. DOI: https://doi.org/10.1002/ps.7247
Schmidt-Jeffris, R. A. (2023). Non-target pesticide impacts on pest natural enemies: Progress and gaps in current knowledge. Pest Management Science, 79(9), 3842–3857. DOI: https://doi.org/10.1002/ps.7563.
Schmidt-Jeffris, R. A., Beers, E. H., & Sater, C. (2021). Meta-analysis and review of pesticide non-target effects on phytoseiids, key biological control agents. Pest Management Science, 77(11), 4848–4862. DOI: https://doi.org/10.1002/ps.6531
Sial, M. U., Zhao, Z., Zhang, L., Zhang, Y., Mao, L., & Jiang, H. (2018). Evaluation of insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxification genes. Scientific Report, 8, 16601. DOI: https://doi.org/10.1038/s41598-018-35076-1
Skouras, P. J., Brokaki, M., Stathas, G. J., Demopoulos, V., Louloudakis, G., & Margaritopoulos, J. T. (2019). Lethal and sub-lethal effects of imidacloprid on the aphidophagous coccinellid Hippodamia variegata. Chemosphere, 229: 392-400. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.037
Southwood, R., & Henderson, P. A. (2000). Ecological Methods (3rd ed). Blackwell Science.
Sterk, G., Hassan, S. A., Baillod, M., Bakker, F., Bigler, F., Blumel, S., Bogenschutz, H., Boller, E., Bromand, B., Brun, J., Calis, J. N. M., Coremans-Pelseneer, J., Duso, C., Garrido, A., Grove, A., Heimbach, U., Hokkanen, H., Jacas, J., Lewis, G., Moreth, L., Polgar, L., Rovesti, L., Samsoe-Peterson, L., Sauphanor, B., Schaub, L., Stäubli, A., Tuset, J. J., Vainio, A., Van de Veire, M., Viggiani, G., Viñuela, E., & Vogt, H. (1999). Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS working group ‘pesticides and beneficial organisms’. Biocontrol, 40, 99-117.
Tang, Q., Ma, K., Chi, H., Hou, Y., & Gao, X. (2019). Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Plos One, 14(1), 1-16. DOI: https://doi.org/10.1371/journal.pone.0208058
Xin, J. J., Yu, W. X., Yi, X. Q., Gao, J. P., Gao, X. W., & Zheng X. P. (2019). Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.). Journal of Integrative Agriculture, 18(7), 1613–1623. DOI: https://doi.org/10.1016/S2095-3119(18)62094-5   
Youn, Y. N., Seo, M. J., Shin, J. G., & Jang, C. (2003). Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biological Control, 28(2), 164–170. DOI: https://doi.org/10.1016/S1049-9644(03)00098-7
Zeinadini Meymand, M., Sahebzadeh, N., Ravan, S., & Basirat, M. (2019). Side effects of spirotetramat and imidacloprid on Hippodamia variegata Goezee feeding on Agonoscena pistaciae Burckhardt & Lauterer. International Journal of Nuts and Related Sciences, 10(1), 35-45.
Zhang, Z., Zhang, X., Wang, Y., Zhao, Y., Lin, J., Liu, F., & Mu, W. (2016). Nitenpyram, dinotefuran, and thiamethoxam used as seed treatments act as efficient controls against Aphis gossypii via high residues in cotton leaves. Journal of Agricultural and Food Chemistry, 64(49), 9276–9285. DOI: https://doi.org/10.1021/acs.jafc.6b03430    
Zuo, Y., Wang, K., Lin, F., Li, Y., & Peng, X. (2016). Sublethal effects of indoxacarb and beta-cypermethrin on Rhopalosiphum padi (Hemiptera: Aphididae) under laboratory conditions. Florida Entomologist, 99(3), 445-450. DOI: https://doi.org/10.1653/024.099.0316