تاثیر کشت گیاهان پوششی مختلف در باغ های گلابی در تنظیم جمعیت پسیل گلابی، Cacopsylla pyricola

نوع مقاله : مقاله پژوهشی


دانشگاه محقق اردبیلی، اردبیل، ایران


کشت گیاهان پوششی یکی از روش­های رایج در مدیریت زیستگاه برای افزایش تنوع بندپایان مفید است. در پژوهش حاضر تأثیر کشت گیاهان پوششی بین ردیف­های درختان گلابی، Pyrus communis L.، در تراکم جمعیت و میزان خسارت پسیل گلابی، Cacopsylla pyricola (Förster)، و دشمنان طبیعی آن روی درختان گلابی طی دو سال متوالی 1401 و 1402 بررسی شد. گیاهان پوششی مورد آزمایشی شامل (1) شبدر قرمز، Trifolium pratense L.، (2) رزماری، Rosmarinus officinalis L. ، (3) کلزا، Brassica napus L.، (4) کشت مخلوط شبدر-رزماری-کلزا و (5) شاهد فاقد گیاهان پوششی بودند. نتایج نشان دادند که کمترین تراکم تخم­ها، پوره­ها و حشرات کامل پسیل گلابی و نیز درصد برگ­ها و میوه­های دارای علایم خسارت پسیل به ازای یک شاخه 30 سانتی­متری در کرت­های حاوی کشت مخلوط شبدر-رزماری-کلزا مشاهده شد. همچنین، بیشترین فراوانی کل شکارگرها در کرت­های حاوی کشت مخلوط شبدر-رزماری-کلزا ثبت شد. در بین شکارگرهای جمع­آوری شده گونه­های Anthocoris nemoralis (Fabricius)، Orius niger (Wolff)، Hippodamia variegata (Goeze)، Chrysoperla carnea (Stephens) و Episyrphus balteatus De Geer به­ترتیب فراوانی بیشتری داشتند. بیشترین مقدار شاخص تنوع شانون (22/2H΄ =  در سال 1401 و 20/2 در سال 1402) و شاخص یکنواختی پیلو (96/0 J' =  در هر دو سال مورد آزمایش) برای ترکیب گونه­های شکارگر پسیل گلابی در کرت­های حاوی کشت مخلوط شبدر-رزماری-کلزا محاسبه شد. بنابراین، می­توان نتیجه­گیری کرد که کشت مخلوط شبدر-رزماری-کلزا بین درختان گلابی موجب افزایش تنوع و فراوانی شکارگرها و کاهش جمعیت پسیل گلابی می­شود.


عنوان مقاله [English]

The effect of cultivation of different cover crops in pear orchards in population regulation of pear psylla, Cacopsylla pyricola

نویسنده [English]

  • S. A. A. Fathi
Department of Plant Protection, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Sowing cover crops is one of the agricultural practices in habitat management for enhancing the diversity of beneficial arthropods. In this study, the impact of sowing cover crops between the lines of pear trees, Pyrus communis L., was assessed on the densities and damage of the pear psylla, Cacopsylla pyricola (Förster), and natural enemies on the pear orchards over two growing seasons (2022 and 2023). Experimental cover crops were (1) red clover, Trifolium pratense L., (2) rosemary, Rosmarinus officinalis L., (3) canola, Brassica napus L., (4) mix cultivation clover-rosemary-canola, and (5) absence of cover crops (as control). The results indicated that the lowest densities of the eggs, nymphs, and adults, and the percent of infested leaves and fruits of the pear psylla per 30-cm branch were observed in the plots with mixed cultivation of clover-rosemary-canola. Moreover, the highest total abundance of predators was recorded in the mix of clover-rosemary-canola plots. Among the collected natural enemies, Anthocoris nemoralis (Fabricius), Orius niger (Wolff), Hippodamia variegata (Goeze), Chrysoperla carnea (Stephens), and Episyrphus balteatus De Geer, respectively indicated the higher abundance. The greatest values of the Shannon diversity index ( = 2.22 in 2022 and 2.20 in 2023) and the Pielou's evenness index (J' = 0.96 in two years) for the combination of predators were calculated in the mix clover-rosemary-canola plots. Therefore, it could be concluded that cultivating of the mix clover-rosemary-canola between pear trees results in the rise of diversity and abundance of predators and the reduction of pear psylla.

کلیدواژه‌ها [English]

  • Psylla
  • Biodiversity
  • Conservation
  • Natural enemies
  • Sustainable agriculture
Albrecht, M., Kleijn, D., Williams, N. M., Tschumi, M., Blaauw, B. R., Bommarco, R., Campbell, A. J., Dainese, M., Drummond, F. A., Entling, M. H., Ganser, D., de Groot, G. A., Goulson, D., Grab, H., Hamilton, H., Herzog, F., Isaacs, R., Jacot, K., Jeanneret, P., Jonsson, M., Knop, E., Kremen, C., Landis, D. A., Loeb, G. M., Marini, L., McKerchar, M., Morandin, L., Pfister, S. C., Potts, S. G., Rundlof, M., Sardinas, H., Sciligo, A., Thies, C., Tscharntke, T., Venturini, E., Veromann, E., Vollhardt, I. M. G., Wackers, F., Ward, K., Westbury, D. B., Wilby, A., Woltz, M., Wratten, S., & Sutter, L. (2020). The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: A quantitative synthesis. Ecology Letters, 23, 1488-1498. DOI: https://doi.org/10.1111/ele.13576
Alioghli, N., Fathi, S. A. A., Razmjou, J., & Hassanpour, M. (2022). Does intercropping patterns of potato and safflower affect the density of Leptinotarsa decemlineata (Say), predators, and the yield of crops? Biological Control, 175, 105051. DOI: https://doi.org/10.1016/j.biocontrol.2022.105051
Bei-Bienko, G. Y., Blagoveshchenskii, D. I., Chernova, O. A., Dantsing, E. M., Emilianov, A. F., Kerzhner, I. M., Loginova, M. M., Martinova, E. F., Shaposhnikov, G. K., Sharov, A. G., Spuris, Z. D., Yaczewski, T. L., Yakhontov, V. V., & Zhiltsoo, L. A. (1967). Keys to the insects of the Europian USSR. Academy of Sciences of the USSR, Zoological Institute.
Brooks, S. J., & Barnard, P. C. (1990). The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bulletin of the British Museum (Natural History) Entomology, 59, 117-286.
Burckhardt, D., & Lauterer, P. (1993). The jumping plant-lice of Iran (Homoptera, Psylloidea). Revue Suisse de Zoologie, 100, 829-898. DOI: https://doi.org/10.5962/bhl.part.79887
Cahenzli, F., Sigsgaard, L., Daniel, C., Herz, A., Lamar, L., Kelderer, M., Jacobsen, S. K., Kruczynska, D., Matray, S., Porcel, M., Sekrecka, M., Swiergiel, W., Tasin, M., Telfser, J., & Pfiffner, L. (2019). Perennial flower strips for pest control in organic apple orchards - a pan-European study. Agriculture, Ecosystems & Environment, 278, 43–53. DOI: https://doi.org/10.1016/j.agee.2019.03.011
de Pedro, L., Perera-Fernández, L. G., López-Gallego, E., Pérez-Marcos, M., & Sanchez, J.A. (2020). The effect of cover crops on the biodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agronomy, 10, 580. DOI: https://doi.org/10.3390/agronomy10040580
Drukker, B., Bruin, J., & Sabelis, M. W. (2000). Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiological Entomology, 25, 260-265. DOI: https://doi.org/10.1046/j.1365-3032.2000.00190.x
DuPont, S. T., & Strohm, C. (2020). Integrated pest management programs increase natural enemies of pear psylla in Central Washington pear orchards. Journal of Applied Entomology, 144,109–122. DOI: https://doi.org/10.1111/jen.12694
DuPont, S. T., Strohm, C., Nottingham, L., & Rendon, D. (2021). Evaluation of an integrated pest management program for central Washington pear orchards. Biological Control, 152, 104390. DOI: https://doi.org/10.1016/j.biocontrol.2020.104390
Eckert, M., Mathulwe, L. L., Gaigher, R., Merwe, L. J. D., & Pryke, J. S. (2020). Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. Journal of Insect Conservation, 24, 133–149. DOI: https://doi.org/10.1007/s10841-019-00196-0
Fallahzadeh, M., & Japoshvili, G. (2010). Checklist of Iranian Encyrtids (Hymenoptera: Chalcidoidea) with descriptions of new species. Journal of Insect Science, 10, 1-24. DOI: https://doi.org/10.1673/031.010.6801
Fathi, S. A. A. (2017). Effect of strip-intercropping of spring canola with clover in improvement of natural biological control of Plutella xylostella (L.). Plant Pest Research, 7, 73-86. DOI: https://doi.org/10.22124/IPRJ.2017.2271
Fathi, S. A. A. (2019). Intercropping effect of strawberry and coriander for controlling the two spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Plant Pest Research, 9, 15-24. DOI: https://doi.org/10.22124/IPRJ.2019.3620
Fathi, S. A. A. (2022). The role of intercrops of eggplant and cowpea on the control of Leucinodes orbonalis Guenee (Lepidoptera: Crambidae). BioControl, 67, 307-317. DOI: https://doi.org/10.1007/s10526-022-10140-y
Fathi, S. A. A. (2023). Does landscape management influence communities of Psyllopsis and natural enemies on the common ash (Fraxinus excelsior L.)? Journal of Insect Conservation, 27, 1-9. DOI: https://doi.org/10.1007/s10841-022-00454-8
Finch, S., & Collier, R. (2000). Host-plant selection by insects - A theory based on ‘appropriate/inappropriate’ landings by pest insects of cruciferous plants. Entomologia Experimentalis et Applicata, 96, 91-102. DOI: https://doi.org/10.1046/j.1570-7458.2000.00684.x
Gadino, A. N., Walton, V. M., & Lee, J. C. (2012). Evaluation of methyl salicylate lures on populations of Typhlodromus pyri (Acari: Phytoseiidae) and other natural enemies in western Oregon vineyards. Biological Control, 63, 48-55. DOI: https://doi.org/10.1016/j.biocontrol.2012.06.006
Gajski, D., & Pekár, S. (2021). Assessment of the biocontrol potential of natural enemies against psyllid populations in a pear tree orchard during spring. Pest Management Science, 77, 2358–2366. DOI: https://doi.org/10.1002/ps.6262
Geldenhuys, M., Gaigher, R., Pryke, J. S., & Samways, M. J. (2021). Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agriculture, Ecosystems & Environment, 307, 107222. DOI: https://doi.org/10.1016/j.agee.2020.107222
Gilbert, F. S. (1993). Hoverflies. Naturalist’s Handbook No.5. Richmond Pub. Slough England
Gordon, R. (1985). The Coccinellidae (Coleoptera) of America north of Mexico. Journal of the New York Entomological Society, 93, 1- 912. DOI: https://www.jstor.org/stable/i25009450
Grez, A. A., & González, R. H. (1995). Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia, 103, 471-474. DOI: https://doi.org/10.1007/BF00328685
Guerrieri, E., & Noyes, J. S. (2009). A review of the European species of the genus Trechnites Thomson (Hymenoptera: Chalcidoidea: Encyrtidae), parasitoids of plant lice (Hemiptera: Psylloidea) with description of a new species. Systematic Entomology, 34, 252–259. DOI: https://doi.org/10.1111/j.1365-3113.2009.00473.x
Gurr, G. M., Wratten, S. D., & Luna, J. M. (2003). Multi-function agricultural biodiversity: Pest management and other benefits. Basic and Applied Ecology, 4, 107–116. DOI: https://doi.org/10.1078/1439-1791-00122
Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., Reich, P. B., Scherer-Lorenzen, M., Schmid, B., Tilman, D., van Ruijven, J., Weigelt, A., Wilsey, B. J., Zavaleta, E. S., & Loreau, M. (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477: 199-202. DOI: https://doi.org/10.1038/nature10282
Isman, M. B., Wilson, J. A., & Bradbury, R. (2008). Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis) against larvae of Pseudaletia unipuncta and Trichoplusia ni in relation to their chemical compositions. Pharmaceutical Biology, 46, 82 - 87. DOI: https://doi.org/10.1080/13880200701734661
James, D. G. (2003). Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 32, 977-982. DOI: https://doi.org/10.1603/0046-225X-32.5.977
James, D. G. (2006). Methyl salicylate is a field attractant for the golden-eyed lacewing, Chrysopa oculata. Biocontrol Science and Technology, 16, 107–110. DOI: https://doi.org/10.1080/09583150500188510
Jerinic-Prodanovic, D., Protic, L., & Mihajlovic, L. (2010). Predators and parasitoids of Cacopsylla pyri (L.) (Hemiptera: Psyllidae) in Serbia. Pesticidi i Fitomedicina, 25, 29–42. DOI: https://doi.org/10.2298/PIF1001029J
Kabiri-Abad, M. K. R., Fathi, S. A. A., Nouri-Ganbalani, G., & Amiri-Besheli, B. (2020). Influence of tomato/clover intercropping on the control of Helicoverpa armigera (Hübner). International Journal of Tropical Insect Science, 40, 39-48. DOI: https://doi.org/10.1007/s42690-019-00048-z
Khan, Z. R., James, D. J., Midega, C. A. O., & Pickett, J. H. (2008). Chemical ecology and conservation biological control. Biological Control, 45, 210-224. DOI: https://doi.org/10.1016/j.biocontrol.2007.11.009
Kocourek, F., Holý, K., Řezáč, M., Sopko, B., & Stará, J. (2021). The effects of various pest control regimes on the community structure and population dynamics of selected natural enemies of Cacopsylla pyri in pear orchards. Biocontrol Science and Technology, 31, 632-651. DOI: https://doi.org/10.1080/09583157.2021.1877615
Landis, D. A., Wratten, S. D., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201. DOI: https://doi.org/10.1146/annurev.ento.45.1.175
Letourneau, D. K., Armbrecht, I., Rivera, B. S., Lerma, J. M., Carmona, E. J., Daza, M. C., Escobar, S., Galindo, V. C., Rrez, C. G., Pez, S. N., Pez, J. L., Pangel, A. M. A., Rangel, J. H., Rivera, L., Saavedra, C. A., Torres, A. M., & Trujillo, A. R. (2011). Does plant diversity benefit agroecosystems? A synthetic review. Ecological Applications, 21, 9-21. DOI: https://doi.org/10.1890/09-2026.1
Magurran, A. E. (2004). Measuring biological diversity. Blackwell publishing, Oxford, UK
Mohammadi, K., Fathi, S. A. A., Razmjou, J., & Naseri, B. (2021). Evaluation of the effect of strip intercropping green bean/garlic on the control of Tetranychus urticae in the field. Experimental and Applied Acarology, 83, 183-195. https://doi.org/10.1007/s10493-020-00583-2
Orre, G. U. S., Wratten, S. D., Jonsson, M., & Hale, R. J. (2010). Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas. BioControl, 53, 62–67. DOI: https://doi.org/10.1016/j.biocontrol.2009.10.010
Rendon, D., Boyer, G., Strohm, C., Castagnoli, S., & DuPont, S. T. (2021). Love thy neighbors? Beneficial and pest arthropod populations in a pear and cherry orchard landscape. Agriculture, Ecosystems & Environment, 313,107390. DOI: https://doi.org/10.1016/j.agee.2021.107390
Sanchez, J. A. (2020). The effect of cover crops on the biodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agronomy, 10, 580. DOI: https://doi.org/10.3390/agronomy10040580
Sanchez, J. A., & Ortín-Angulo, M. C. (2012). Abundance and population dynamics of Cacopsylla pyri (Hemiptera: Psyllidae) and its potential natural enemies in pear orchards in southern Spain. Crop Protection, 32, 24–29. DOI: https://doi.org/10.1016/j.cropro.2011.11.003
Sanchez, J. A., Carrasco-Ortiz, A., Lopez-Gallego, E., Ramirez-Soria, M. J., LaSpina, M., Ortin-Angulo, M. C., & Ibañez-Martinez, H. (2021). Density thresholds and the incorporation of biocontrol into decision-making to enhance the control of Cacopsylla pyri in pear (cv. Ercolini) orchards. Pest Management Science, 78, 116 - 125. DOI: https://doi.org/10.1002/ps.6615
Saunders, M. E., Luck, G. W., & Mayfield, M. M. (2013). Almond orchards with living ground cover host more wild insect pollinators. Journal of Insect Conservation, 17, 1011–1025. DOI: https://doi.org/10.1007/s10841-013-9584-6
Silva, E. B., Franco, J. C., Vasconcelos, T., & Branco, M. (2010). Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bulletin of Entomological Research, 100, 489–499. DOI: https://doi.org/ 10.1017/S0007485309990526
Southwood, T. R. E., & Henderson P. A. (2000). Ecological Methods. Blackwell Science, USA
Stratton, C. A., Hodgdon, E., Rodriguez-Saona, C., Shelton, A. M., & Chen, Y. H. (2019). Odors from phylogenetically-distant plants to Brassicaceae repel an herbivorous Brassica specialist. Scientific Reports, 9, 10621. DOI: https://doi.org/10.1038/s41598-019-47094-8
Tajmiri, P., Fathi, S. A. A., Golizadeh, A., & Nouri-Ganbalani, G. (2017). Strip-intercropping canola with annual alfalfa improves biological control of Plutella xylostella (L.) and crop yield. International Journal of Tropical Insect Science, 37, 208-216. DOI: https://doi.org/10.1017/S1742758417000145
Tobias, V. I. (1995). Keys of the insects of the European part of the USSR, Vol. 3, Hymenoptera. Science Publishers, Lebanon, New Hampshire.
Tougeron, K., Iltis, C., Renoz, F., Albittar, L., Hance, T., Demeter, S., & Le Goff, G. J. (2021). Ecology and biology of the parasitoid Trechnites insidiosus and its potential for biological control of pear psyllids. Pest Management Science, 77, 4836-4847. DOI: https://doi.org/10.1002/ps.6517
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity ecosystem service management. Ecology Letters, 8, 857–874. DOI: https://doi.org/10.1111/j.1461-0248.2005.00782.x
Winter, S., Bauer, T., Strauss, P., Kratschmer, S., Paredes, D., Popescu, D., Landa, B., Guzmán, G., Gómez, J. A., Guernion, M., Zaller, J. G., & Batáry, P. (2018). Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. Journal of Applied Ecology, 55, 2484-2495. DOI: https://doi.org/10.1111/1365-2664.13124
Zarei, E., Fathi, S. A. A., Hassanpour, M., & Golizadeh, A. (2019). Assessment of intercropping tomato and sainfoin for the control of Tuta absoluta (Meyrick). Crop Protection, 120, 125-133. DOI: https://doi.org/10.1016/j.cropro.2019.02.024
Zhu, J., & Park, K. C. H. (2005). Methyl salicylate, a soybean aphid induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology, 31, 1733-1746. DOI: https://doi.org/10.1007/s10886-005-5923-8