تاثیر باکتری Bacillus thuringiensis‌، ویروس پلی هدرهسته ای، اسپینوزاد و امامکتین روی لارو سن سوم پروانه برگخوارچغندرقند Spodoptera exigua (Lep.:Noctuidae) در شرایط آزمایشگاهی و صحرایی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ارومیه

2 گروه گیاه پزشکی، دانشگاه آزاد اسلامی واحد مهاباد

چکیده

پروانه برگخوار چغندرقند Spodoptera exigua Hübner (Lep.: Noctuidae) یکی از آفات مهم چغندرقند (Beta vulgaris L.) می­باشد، با توجه به مشکلات ناشی از مصرف سموم شیمیایی علیه این آفت، استفاده از حشره کش ­های زیست پایه در برنامه مدیریت تلفیقی آن قابل توصیه می ­باشد. لذا در این تحقیق، تاثیر باکتری Bacillus thuringiensis subsp. kurstaki، ویروس SeNPV، اسپینوزاد و امامکتین روی لاروهای سن سوم پروانه ­برگخوار­چغندرقند در شرایط آزمایشگاهی و صحرایی مورد بررسی قرارگرفت. در شرایط آزمایشگاهی، شاخص LC50 به وسیله تجزیه پروبیت حاصل از تاثیر غلظت­ های مختلف باکتری، ویروس، اسپینوزاد و امامکتین بعد از 24، 48 و 72 ساعت و همچنین ارزیابی تاثیر هر ترکیب در شرایط صحرایی با استفاده از روش هندرسون- تیلتون و آنالیز GLM-U بعد از 1، 3، 7، 14 و 21 روز محاسبه شد. نتایج تجزیه پروبیت حاصل از غلظت­ های مختلف باکتری، اسپینوزاد و امامکتین بعد از 24، 48 و 72 ساعت به ترتیب (52/3588، 25/1، 89/1)، (87/1954، 95/0، 33/1) و (25/1843، 78/0، 20/1) میلی­گرم در لیتر و برای ویروس (105×34/5، 105×­31/4 و105×­14/4) OBs/lm به­ دست ­آمد.­ در بررسی تاثیر تیمارهای باکتری، ویروس، اسپینوزاد و امامکتین در شرایط صحرایی بعد از 21 روز بیشترین و کمترین تلفات به ترتیب مربوط به تیمار امامکتین(33/61) و ویروس)00/32%( گزارش شد. در ارزیابی خسارت، بیشترین خسارت مربوط به تیمار ویروس بعد از شاهد و کمترین در تیمار امامکتین و سپس اسپینوزاد مشاهده شد. بر اساس زیست ­سنجی آزمایشگاهی و صحرایی سموم اسپینوزاد و امامکتین، موثرترین ترکیبات در کنترل این آفت و ویروس و باکتری در مدیریت تلفیقی قابل­ توصیه می ­باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Bacillus thuringiensis, SeNPV, Spinosad and Emamectin on third larval instar of Spodoptera exigua (Lep.: Noctuidae) in laboratory and field conditions

نویسندگان [English]

  • M. Abdollahzadeh Bavani 1
  • Sh. Aramideh 1
  • A. Hosseinzadeh 2
1 Department of Plant Protection, Agricultural Faculty, Urmia University, Iran
2 Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran
چکیده [English]

The beet armyworm, Spodoptera exigua Hübner is one of the most important pests of sugar beet. Due to the problems associated with the use of chemical pesticides against of this pest, the use of bio-pesticides in integrated management program is recommended. Therefore, in this research, effects of Bacillus thuringiensis subsp. kurstaki, SeNPV virus, Spinosad and Emamectin on 3rd larval instar of beet armyworm in laboratory and field conditions were evaluated. In laboratory experiments, LC50 values of different concentrations of B. thuringiensis, SeNPV virus, Spinosad and Emamectin after 24, 48 and 72 hours were determined by probit analysis. Also, the effects of each compound using Henderson- Tilton method and GLM analysis after 1, 3, 7, 14 and 21 days were evaluated in field conditions. The results of probit analysis of different concentrations of Bt., Spinosad and Emamectin after 24, 48 and 72 hours were (3588.5, 1.25, 1.89), (1954.87, 0.95, 1.33) and (1843.25, 0.78, 1.20) mg/L, and for SeNPV (5.34×105, 4.31×105, 4.14 ×105) OBs.ml, respectively. Also, the highest and lowest mortality due to Bt., SeNPV, Spinosad and Emamectin in field conditions after 21 days were related to Emamectin (61.33) and SeNPV virus (32.00) %. The highest and lowest percentages of damage were observed in the SeNPV virus, control and the Emamectin and Spinosad, respectively. Based on laboratory and field bioassay, Spinosad and Emamectin, as the most effective compounds for controlling this pest and virus and Bt for integrated pest management are recommended.

کلیدواژه‌ها [English]

  • Beet armyworm
  • biological control
  • Bio-pesticides
  • Damage
Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267.

Altaf Sabri, M., Sajid Aslam, M., Hussain, D. and Saleem, M. 2016. Evaluation of lethal response of biorational insecticides against Spodoptera litura (Lep.: Noctuidae). Journal of Entomology and Zoology Studies 4: 270-274.

Aramideh, Sh., Safaralizadeh, M. H., Pourmirza, A. A. and Parvizi, R. 2005. Investigation of susceptibility of larval instar, pupa and prepupa of Spodoptera exigua H. (Lep.: Noctuidae) to Steinernema carpocapsae nematodes in laboratory conditions and on sugar beet. Journal of Agricultural Science and Natural Resources of Gorgan 12: 159-166. (In Persian)

Bengochea, P., Sánchez-Ramos, I., Saelices, R., Amor, F., del Estal, P., Viñuela, E., Adán, Á., López, A., Budia, F. and Medina, P. 2014. Is emamectin benzoate effective against the different stages of Spodoptera exigua (Hübner) (Lep.: Noctuidae). Irish Journal of Agricultural and Food Research 53: 37- 49.

Cai, Y., Cheng, Z., Li, C., Wang, F., Li, G. and Pang, Y. 2010. Biological activity of recombinant Spodoptera exigua multicapsid nucleopolyhedrovirus against Spodoptera exigua larvae. Biological Control 55: 178–185.

Cisneros, J., Goulson, D., Derwent, L. C., Penagos, D. I., Hernandez, O. and Williams, T. 2002. Toxic effects of spinosad on predatory insects. Biological Control 23: 156–163.

Cleveland, C. B., Mayes, M. A. and Cryer, S. A. 2001. An ecological risk assessment for spinosad use on cotton. Pest Management Science 58: 70-84.

Darsouei, R., Karimi, J., Ghadamyari, M. and  Hosseini, M. 2018. Natural enemies of the sugar beet army worm, Spodoptera exigua (Lep.: Noctuidae) in Northeast Iran. Bulletin of Iranian Entomological Society 127: 446-464. (In Persian)

El-Sayed, A. and El-Sheikh. 2014. Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. (Lep.: Noctuidae). Crop Protection67: 228-234.

Felix, J. J. A.Bianchi, Just, M.,VlakR. R., and van der Werf, W. 2002. Biological control of beet armyworm, Spodoptera exigua, with Baculoviruses in greenhouses: development of a comprehensive process-based model. Biological Control 23: 35-46.

Goodarzi, M., Fathipour, Y. and Talebi, A. A. 2015. Antibiotic resistance of canola cultivars affecting demography of Spodoptera exigua (Lep.: Noctuidae). Journal of Agricultural Science and Technology 17: 23–33

Hernandez-Martinez, P., Ferre, J. and Escriche, B. 2008. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Journal of Invertebrate Pathology 97: 245–250.

Hu, J., Wang, X., Zhang, Y., Zheng, Y., Zhou,  S. and  Huang, G. H­. 2016. Characterization and growing development of Spodoptera exigua (Lep.: Noctuidae) larvae infected by Heliothis virescens ascovirus 3h (HvAV-3h). Journal of Economic Entomology 109: 2020–2026.

Hashemitassuji, A., Hassan, M. Safaralizadeh, Aramideh, Sh. and Hashemitassuji, Z. 2015. Effects of Bacillus thuringiensis var. kurstaki and Spinosad on three larval stages 1st, 2nd and 3rd of tomato borer, Tuta absoluta (Meyrick) (Lep.: Gelechiidae) in laboratory conditions. Archives of Phytopathology and Plant Protection 48: 377–384.

Huang, S., Li, X., Li, G. and Jin, D. 2018. Effect of Bacillus thuringiensis CAB109 on the growth, development, and generation mortality of Spodoptera exigua (Hübner) (Lep.: Noctuidae). Egyptian Journal of Biological Pest Control 28: 1-5.

Ishaaya, I.,  Kontsedalov, S. and  Horowitz, A. R. 2002. Emamectin, a novel insecticide for controlling field crop pests. Japan-Israel Workshop: Pest Management Science 58: 1091-1095.

Kheyri, M. 1999. The most important pest of sugar beet in Iran and their control. Agricultural Research, Education Organization 34: 1-14. (In Persian)

Lasa, R., Aki, I., Itxaso, P., Jose, I., Belda, E., Williams, T. and caballero, P. 2007. Efficacy of Spodoptera exigua multiple nucleopolyhedrovirus as a biological insecticide for beet armyworm control in greenhouses of southern Spain. Biocontrol Science and Technology 17: 221-232.

Liburd, O. E., Funderburk, J. E. and Olson, S. M. 2000. Effect of biological and chemical insecticides on Spodoptera species (Lep.: Noctuidae) and marketable yields of tomatoes. Journal of Applied Entomology 124: 19-25.

Lin, H. F., Yang, X. J., Gao, Y. B. and Li, S. G. 2007. Pathogenicity of several fungal species on Spodoptera litura. Journal of Applied Ecology 48: 284-292.

Liu, Y., Li, X., Chao, Z., Liu, F. and Wei, M. 2016. Toxicity of nine insecticides on four natural enemies of Spodoptera exigua. ­­Scientific Reports 6: 1-9.

Magholifard, Z.,  Hesami, S. H., Marzban, R. and Salehi Jouzani, G. H. 2018. Pathogenic effects of three Nucleopolyhedrovirus, Spodoptera littoralis NPV, Helicoverpa armigera NPV, Spodoptera litura NPV on life stages of Egyptian cotton leaf worm Spodoptera littoralis. Entomology and Phytopathology 58:  203-218. (In Persian)

Moadeli, T., Hejazi, M. J. and Golmohammadi, G. 2014. Lethal effects of pyriproxyfen, spinosad and indoxacarb and sublethal effects of pyriproxyfen on the 1st instars larvae of beet armyworm, Spodoptera exigua (Hubner) (Lep.: Noctuidae) in the Laboratory. Journal of Agriculture Science and Technology 16: 1217-1227.

Mostafa, M. A. M., Kákai, Á., Awad, M. and Fónagy, A. 2016. Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage moth, Mamestra brassicae L. (Lep.: Noctuidae). Crop Protection 90: 197-204.

Moulton, J. K., Pepper, D. A. and Dennehy, T. J. 2000. Beet armyworm (Spodoptera exigua) resistance to spinosad. Pest Management Science 56: 842-848.

Parsaeyan, E., Saber, M. and Bagheri, M. 2013. Toxicity of emamectin benzoate and cypermethrin on biological parameters of cotton bollworm, Helicoverpa armigera (Hübner) in laboratory conditions. Journal of crop protection 2: 477-485.

Pourmirza, A. A. 2005. Local variation in susceptibility of Colorado potato beetle (Col.: Chrysomelidae) to insecticide. Journal of Economic Entomology 98: 2176-80.

Pourmirza, A. A. and Kamali, S. A. 2003. Production Nucleopolyhedrovirus on beet army worm (Lep.: Noctuidae). Journal of Agricultural Science 26(1): 79-90. (In Persian).

Rabiya, M. M., Seraj, A. A., Talaee Hasanloee, R. and Rahimi, H. 2005. Effects of MbNPV and Indoxacarb on larvae of Spodoptera exigua (Lep.: Noctuidae), Beet armyworm. Journal of Agricultural Science 34: 89-81. (In Persian).

Reddy, P. P. 2013. Recent advances in crop protectionavermectins. New Delhi: Springer, India. 13–24

Rehan, ­A. and Shoaib, F. 2014. Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lep.: Noctuidae). Crop Protection 56: 10–1­5.

Reichenbach, N. G. 1985. Response of the western spruce budworm to temperature and dose of a virus, a growth regulator, and an organophosphate. Entomologia Experimentalis et Applicata 38: 57-63.

Santis, E. L., Hernandez, L. A., Martinez, A. M., Campos, J., Figueroa, J. I., Lobit, P., Chavarrieta, J. M., Vinuela, E., Smagghe, G. and Pineda, S. 2012. Long-term foliar persistence and efficacy of spinosad against beet armyworm under greenhouse conditions. Pest Management Science 68: 914–921.

Senthil-Nathan, S. and Kalaivani, K. 2005. Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura Fabricius (Lep.: Noctuidae). Biological Control34: 93-98.

Sharma, P. C. and Pathania, A. K. 2015. Toxicity of some insecticides and biopesticides to Spodoptera litura (fabricius). Indian Journal of Science and Technology 3: 43-50.

Sheikhzadeh, B., Hejazi, M­. J. and Karimzadeh, R.2014. Effects of Methoxyfenozide, Lufenuron and Flufenoxuron on beet armyworm, Spodoptera exigua (Lep.: Noctuidae) in laboratory conditions. Journal of Entomological Society of Iran34: 1-8. (In Persian)

Singh, P. and Moore, R. F. 2005. Handbook of Insect Rearing. Elsevier Science Publishers 7: 575- 576.

Sukirno, T., Muhammad, R., Khawaja, G., Salamouny, S. E., Koko, D. S. and Saad Aldawood, A.  2017. The effectiveness of spinosad and neem extract against Spodoptera littoralis (Boisd.) and Spodoptera exigua (Hubner) exploring possibilities to enhance the bio-pesticide persistence with natural UV protectants. Pakistan Journal of Agricultural Science 54: 743-751.

Sun, Y. P. 1950. Toxicity indexes an improved method of comparing the relative toxicity of insecticides. Journal of Economic Entomology 43: 45–53.

Takatsuka, J. and Kunimi, Y. 2002. Lethal effects of Spodoptera exigua nucleopolyhedrovirus isolated in Shiga prefecture, Japan, on larvae of Spodoptera exigua (Lep.: Noctuidae). Applied Entomology and Zoology 37: 93-101.

Talebi-Jahromi, K.  2008. Pesticide Toxicology. Tehran University Press. 4th ed. 507 pp. (In Persian)

Tanada, Y. and Kaya, H. K. 1993. Insect Pathology. Academic Press, London. 666 pp.

Venkateswari, G., Krishnayya, P. V., Rao, P. A. and Murthy, K. V. M. K. 2008. Bio-efficacy of abamectin and emamectin benzoate against Spodoptera litura (Fab.). Pesticide Research Journal 53: 37–49.

Wang, D., Wang, Y. M., Liu, H. Y., Xin, Z. and Xue, M. 2013. Lethal and sublethal effects of spinosad on Spodoptera exigua (Lep.: Noctuidae). Journal of Economic Entomology 106: 1825-31.

Wing, K. D., Sacher, M., Kagaya, Y., Tsurubuchi, Y., Mulderig, L., Connair, M. and Schnee, M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Protection 19: 537–545

Yuana, X.­, Zhaoa, M., Wei, J., Zhang, W., Wang, B., Khaing, M. and Liang, G. 2017. New insights on the role of alkaline phosphatase from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Journal of Insect Physiology 98: 101-107.