بررسی تاثیر Bacillus thuringiensis درکنترل پروانه برگخوارEnnomos quercinaria (Hafngel)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات کشاورزی و منابع طبیعی ساری، سازمان تحقیقات، آموزش و ترویج کشاورزی، مازندران، ایران

2 گروه گیاه‌پزشکی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، مازندران، ایران

چکیده

در این تحقیق به منظور کنترل پروانه برگخوار Ennomus quercinariaسمیت غلظت‌های مختلف Bacillus thuringiensisروی لاروهای این آفت بررسی و میزان LC50آن تخمین زده شد. ارزیابی‌های آزمایشگاهی به روش غوطه‌ورسازی مبین حساسیت بیشتر لارو سن دوم نسبت به اول است، به طوری­که LC50  محاسبه شده برای لارو سن اول و دوم به ترتیب 14/2و 6/0 پی‌پی‌ام برآورد شد. سپس با توجه به غلظت‌های محاسبه شده، سه غلظت 1، 2، 3 پی‌پی‌ام B. thuringiensis روی نهال‌های 2 ساله درخت انجیلی و با استفاده از سمپاشی دستی پاشیده شده، سپس 30 عدد لارو سن دوم روی نهال‌ها رهاسازی شدند. نتایج آزمون مقایسه میانگین‌های LSD نشان داد که از یک سو تفاوت شاهد (آب) با هر یک از سه تیمار B. thuringiensisاز نظر تلفات لاروها در سن دوم در سطح یک درصد معنی‌دار شده (01/0>p) و از سوی دیگر بیشترین میزان تلفات توسط تیمار 2 پی‌پی‌ام به میزان 62 درصد حاصل شد. در شرایط میدانی حشره‌کش بیولوژیک B. thuringiensisسبب 35 درصد مرگ و میر آفت شده، در صورتی­که میزان تلفات شاهد 8/2 درصد بود. نتایج حاصل از این مطالعه می‌تواند گامی مهم در معرفی یک ترکیب کم‌خطر و سالم برای مبارزه با آفات در اکوسیستم جنگل و حشرات مفید آن باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on the effect of Bacillus thuringiensis on control of Ennomus quercinaria (Hafngel)

نویسندگان [English]

  • A. Vatandoost 1
  • M. R. Damavandian 2
  • H. Barimani Varandi 1
  • M. R. Babaee 1
1 Sari Agricultural and Natural Resources Research Center, Agriculture Research, Education and Extension Organization (AREEO), Mazandaran, Iran
2 Department of Plant Protection, College of Cultural Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

In order to control Ennomus quercinaria, toxicity of different concentrations of Bacillus thuringiensis on was studied against the larvae of this pest to estimate LC50 levels of this biopesticide in this study. Laboratory evaluations by dipping method indicated more sensitivity of second instar larvae than the first ones, so that LC50 values of 2.14 and 0.6 ppm were calculated for the first and second instar larvae, respectively. Then, three calculated concentrations (1, 2, 3 ppm) of B. thuringiensis were sprayed on 2-year-old Parrotia seedlings using a back mounted sprayer, followed by releasing 30 second instar larvae on the seedlings. Results of LSD test showed significant differences in the mortality of second instar larvae between the control (water) and each of the three B. thuringiensis concentrations (p<0.01). The highest mortality rate (62%) caused by a concentration of 2 ppm. In the field conditions, B. thuringiensis caused 35% mortality versus a mortality rate of 2.8% in the control. The results of this study can be an important step in introducing a low-risk and healthy compound for pest control in the forest ecosystem and its beneficial insects.

کلیدواژه‌ها [English]

  • Bioassay
  • Bacillus thuringiensis
  • Ennomus quercinaria
  • Mazandaran forests
Anderson, J. F. and Kaya, H. K. 1945. Biological control of the elm spanworm Ennomos subsignarius. VIII International Plant Protection Congress, Moscow Reports and Information, Section V., Biological and Genetic Control. 13 May, Russia. pp. 8–15.

Avilla, C., Vargas-Osuna, E., Gonzalez-Cabrera, J., Ferre, J. and Gonzalez-Zamora, J. E. 2005.Toxicity of several δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain. Journal of Invertebrate Pathology 90: 51-54.

Babaei, M. R. 2014. Supplementary study of biology of Ennomus quercinaria (Lep.: Geometridae) in Mazandaran province. Iranian Journal of Forest and Range Protection Research11(1): 1-9. (in Farsi)

Barimani Varandi, H., Babaee, M. R.  and Vatandost, A. 2007. Some biological notes on Ennomos quercinaria (Lep.: Geometridae) in Mazandaran. Iranian Journal of Forest and Range Protection Research 4(2): 71-79. (in Farsi)

Bartninkaite, I. and Ziogas, A. 1996. Dynamics of elimination of entomopathogenic bacteria included in the composition of the preparation Foray 48B in the forest following its industrial application. Ekologija 2: 8-16.

Bauce, E., Bidon, Y., and Berthiaume, R. 2002. Effects of food nutritive quality and Bacillus thuringiensis on feeding behaviour, food utilization, and larval growth of spruce budworm Choristoneura fumiferana (Clem.) when exposed as fourth- and sixth-instar larvae. Agricultural and Forest Entomology 4(1): 57–70.

Bauer, L. S., Dean, D. and Handelsman, J. 2005.Bacillus thuringeniensis: Potential for management of Emerald Ash Borer. Emerald Ash Borer Research and Technology Development Meeting. 26-27 September, USA. pp. 38 – 39.

Bernner, L. 1992. Asian gypsy moth update: helicopters spray B.t while residents' questions are left unanswered. Journal of Pesticide Reform 12(4): 16-23.

Carisey, N., Bauce, E., Dupont, A. and Miron, S. 2004. Effects of bud phenology and foliage chemistry of balsam fir and white spruce trees on the efficacy of Bacillus thuringiensis against the spruce budworm, Choristoneura fumiferana. Agricultural and Forest Entomology 6(1): 55–69.

Draganova, S., Takov, D., Pilarska, D., Doychev, D., Mirchev, P. and Georgiev, G. 2013. Fungal Pathogens on Some Lepidopteran Forest Pests in Bulgaria. Acta Zoologica Bulgarica 65(2): 179 – 186.

Dulmage, H.T. 1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. Journal of Invertebrate Pathology 15(2): 232-239.

Farrar, R. R., Martin, P. A. W. and Ridgway, R. L. 1996. Host plant effects on activity of Bacillus thuringiensis against gypsy moth (Lepidoptera: Lymantriidae) larvae. Environmental Entomology 25(5): 1215-1223.

Hajgozar, A., Pourbehi, H., Eskuruchi, F., Zare Khormizi, M., Sharifnezhad, H. and Biranvand, A. 2013. Effects of Bacillus thuringiensis on the larval stages of Tortrix viridana on oak trees. International Research Journal of Applied and Basic Sciences 5(6): 762 – 765.

Iriarte, J. and Caballero, P. 2001. Biología y Ecología de Bacillus thuringiensis. Phytoma España3: 15-44.

Jankevica, L. 2004. Ecological associations between entomopathogenic fungi and pest insects in Latvia. Latvijas entomologs 41: 60-65.

Johnson, K. S., Scriber, J. M., Nitao, J. K. and Smithley, D. R. 1995. Toxicity of Bacillus thuringiensis var kurstaki to three nontarget Lepidotera in field studies. Environmental Entomology 24(2): 288-297.

Karimi, J., Hassanshahi, G.H., Abbasipour, H., Nasiri Moghadam, M. and Talei, D. 2013. Survey of ability of bacterium, Bacillus thuringiensis subsp. kurstaki (3a 3b) against Mythimna unipuncta and Chilo suppressalis. 15th National Rice Conference. 19-20 March, Iran.pp. 1-5. (in Farsi)

Khorramvatan, S., Marzban, R., Ardjmand, M., Seifkordi, A. and Askary, H. 2017. Optimizing microencapsulated formulation stability of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) against ultraviolet condition using response surface methodology. Archives of Phytopathology and Plant Protection 50(5-6): 275-285.

Kooch, Y., Hosseini, S. M., Akbarinia, M., Tabari, M. and Jalali, S. G. H. 2010. The role of dead tree in regeneration density of mixed beech stand (case study: Sardabrood forests, Chalous, Mazandaran). Iranian Journal of Forest 2(2): 93-103. (in Farsi)

Kouassi, K. C., Lorenzetti, E., Guertin, C., Cabana, J. and Mauffette, Y. 2001. Variation in the susceptibility of the forest tent caterpillar (Lepidoptera: Lasiocampidae) to Bacillus thuringiensis variety kurstaki HD-1: effect of the host plant. Journal of Economic Entomology 94(5): 1135–1141.

Li, G. M., Zhang, X. Y. and Wang, L. Q. 2001.  The Use of Bacillus thuringiensis on forest integrated pest management. Journal of Forestry Research 12(1): 51-54.

Luciano, P., Floris, I., Lentini, A., Prota, R., Deiana, P. and Langiu, G. 1992. Utilization of Bacillus thuringiensis Berl. To control Lymantria dispar in sardinian cork oak forests. Redia 75: 549-563.

Luciano, P., Lentini, A. and Villemant, C. 1998. Effects of Bacillus thuringiensis and defoliation by gypsy moth on lepidopteran fauna in cork-oak forests. Proceeding of integrated protection of Quercus spp. Forests. October 26-29, Morocco. pp. 115-119.

Manley, C. 2008. British Moth and Butterflies (1sted.). Bloomsbury Publication.

Marzban, R., Saberi, F. and Shirazi, M. M. 2014. Separation of Bacillus thuringiensis from fermentation broth using microfiltration: Optimization approach. Research Journal of Biotechnology 9: 33-37.

Marzban, R., Saberi, F. and Shirazi, M. M. 2016. Microfiltration and ultrafiltration of Bacillus thuringiensis fermentation broth: membrane performance and spore-crystal recovery approaches. Brazilian Journal of Chemical Engineering 33(4): 783-791.

Naoum, J. 2011.Ennomos quercinaria (1sted.). International book marketing service.

Nikdel, M., Omid, R. and Dordaei, A. A. 2014. Evaluation the effect of two products of Bacillus thuringiensis on Lymantria dispar L. (Lep.: Lymantriidae) larvae in the Arasbaran forests, Iran. Journal of Entomological Research 5(2): 171-181. (in Farsi)

Polovinko, G., Yaroslavtseva, O., Teshebaeva, Z. and Kryukov, V. 2010. Dominating species of entomophilous Ascomycetes anamorphs in West Siberia, Primorsky Krai, and Kyrgyzstan. Contemporary Problems of Ecology 3(5): 515-521.

Pourbabaei, H. and Dado, K. H. 2005. Species diversity of woody plants in the district No.1 forests, Kelardasht, Mazandaran province. Iranian Journal of Biology 18(4): 307-322.

Rausell, C., Martínez-Ramírez, A. C., García-Robles, I. and Real, M. D. 2000. A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests. Applied and Environmental Microbiology 66: 1553–1558.

Rosas-García, N. M. 2009. Biopesticide Production from Bacillus thuringiensis: An Environmentally Friendly Alternative. Recent Patents in Biotechnology 3(1): 28-36.

Rossiter, M., Yendol, W. G. and Dubois, N. R. 1990. Resistance to Bacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): genetic and environmental causes. Journal of Economic Entomology 83(6): 2211-2218.

Sedaratian Jahromi, A. 2013. Sublethal effects of bacterium, Bacillus thuringiensis on some ecophysiological parameters of Helicoverpa armigera and parasitoid Habrobracon hebetor. PhD.Thesis. Tarbiat Modarres University. (in Farsi)

Sklodowski, J. J. W. 1996. Communities of epigeic insects (Col.: Carabidae) one year after spraying the nun moth with the preparations Trebon, Decis, Foray and Dimilin. Sylwan140: 83-97.

Solter, L., Pilarska, D. and Vossbrinck, C. 2000. Host specificity of Microsporidia pathogenic to forest Lepidoptera. Biological Control 19(1): 48-56.

Solter, L., Siegel, J., Pilarska, D. and Higgs, C. 2002. The impact of mixed infection of three species of microsporidia from the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Journal of Invertebrate Pathology 81(2): 103-113.

Veloorvalappil, N. J., Robinson, B. S. and Sailas, B. 2013. An Overview on the Crystal Toxins fromBacillus thuringiensis. Advances in Microbiology 3: 462-472.

Webb, R. E., Peiffer, R., Fuester, R. W., Thorpe, K. W., Calabrese, L. and McLaughlin, J. M. 1998. An evaluation of the residual activity of traditional, safe, and biological insecticides against the gypsy moth. Journal of Arboriculture 24: 286-293.

Whaley, W. H., Anhold, J. and Schaalje, G. B. 1998. Canyon drift and dispersion of Bacillus thuringiensis and its effects on select nontarget Lepidopterans in Utah. Environmental Entomology 27(3): 539-548.

Yilmaz, S., Karabörklü, S., Azizoğlu, U., Ayvaz, A., Akbulut, M. and Yildiz, M. 2013. Toxicity of native Bacillus thuringiensis isolates on the larval stages of pine processionary moth Thaumetopoea wilkinsoni at different temperatures. Turkish Journal of Agriculture and Forestry 37: 163 – 172.

Zibaee, I., Bandani, A.R., Sendi, J.J., Talaei-Hassanloei, R.and Kouchaki, B. 2010. Effects of Bacillus thuringiensis var. kurstaki and medicinal plants on Hyphantria cunea Drury (Lepidoptera: Arctiidae). Invertebrate Survival Journal 7: 251 – 261.