حساسیت مراحل شفیرگی و حشره کامل زنبور پارازیتوئید (Lysiphlebus fabarum Marshall (Hym.: Braconidae نسبت به حشره کش های تیاکلوپرید+دلتامترین، پیریمیکارب و پیمتروزین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

چکیده

زنبور Lysiphlebus fabarum Marshall پارازیتوئید داخلی شته سیاه باقلا Aphis fabae Scopoli، یکی از اجزای مهم مدیریت تلفیقی این آفت می ­باشد که لازم است برهمکنش این زنبور با حشره­ کش­ های مورد استفاده در کنترل شیمیایی این آفت مورد مطالعه قرار گیرد. در این مطالعه، اثرات کشندگی غلظت توصیه شده­ سه حشره­ کش تیاکلوپرید+دلتامترین، پیریمیکارب و پیمتروزین بر مراحل شفیرگی و حشره کامل زنبور در شرایط آزمایشگاهی بررسی شد. به این منظور، شفیره­ ها با روش غوطه­ وری و حشرات کامل با روش غیر مستقیم (قفس) در معرض حشره­ کش­ ها قرار گرفتند. تیاکلوپرید+دلتامترین و پیریمیکارب به طور معنی­ داری میزان مرگ و میر را در هر دو مرحله ­ی شفیرگی و حشره کامل افزایش داد، در حالی­ که پیمتروزین بر هیچ یک از مراحل مورد آزمایش اثر معنی­ داری نداشت. بر اساس استاندارد سازمان بین­ المللی برای کنترل بیولوژیکی (IOBC) (سمیت حشره­ کش­ ها)، تیاکلوپرید+دلتامترین در مراحل شفیرگی و حشره کامل به ترتیب در گروه­ های تا حدودی زیان ­بار (3) و زیان ­بار (4) و پیریمیکارب نیز به ترتیب در گروه ­های کمی زیان ­بار (2) و بی­ زیان (1) قرار گرفتند. پیمتروزین در هر دو مرحله­ ی مورد آزمایش در گروه بی­ زیان (1) قرار گرفت. همچنین در این مطالعه، دوره­ ی پایداری سمیت حشره­ کش ­ها در مرحله­ ی حشره کامل زنبور در شرایط نیمه ­مزرعه ­ای بررسی شد. بر اساس استاندارد IOBC (پایداری حشره­کش­ها)، تیاکلوپرید+دلتامترین، پیریمیکارب و پیمتروزین به ترتیب در گروه­ های به نسبت پایدار (C)، کمی پایدار (B) و ناپایدار (A) قرار گرفتند. طبق نتایج مطالعه حاضر، پیمتروزین و پیریمیکارب اثرات جانبی کمی بر مراحل شفیرگی و حشره کامل زنبور L. fabarum دارند، اما تیاکلوپرید+دلتامترین اثرات خطرناکی بر هر دو مرحله­ ی مورد آزمایش ایجاد می­ کند.

کلیدواژه‌ها


عنوان مقاله [English]

Susceptibility of pupal and adult stages of the parasitoid Lysiphlebus fabarum Marshall (Hym.: Braconidae) to insecticides thiacloprid+deltamethrin, pirimicarb and pymetrozine

نویسندگان [English]

  • A. Mardani 1
  • Q. Sabahi 1
  • A. Almasi 2
1 Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
2 Department of Plant Protection, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Lysiphlebus fabarum Marshall,an endoparasitoid of the black bean aphid, Aphis fabae Scopoli is an important component of integrated pest management of this pest and it is necessary to study its interaction with insecticides used against this pest. In this study, the lethal effects of recommended concentrations of three insecticides, thiacloprid+deltamethrin, pirimicarb and pymetrozine were investigated on pupal and adult stages of the parasitoidunder laboratory conditions. The pupae and the adults were exposed to insecticides with mummy dipping and dry residues of insecticides on glass plates methods, respectively. Thiacloprid+deltamethrin and pirimicarb significantly caused mortality rates in pupal and the adult stages, while pymetrozine had no significant effect. According to International organization for biological control (IOBC)(toxicity of insecticides), thiacloprid+deltamethrin at the pupal and the adult stages were classified as moderately harmful (class 3) and harmful (class 4), respectively. Pirimicarb was also classified as slightly harmful (class 2) and harmless (class 1), respectively. Pymetrozine in the two tested stages were classified as harmless (class 1). In this study, the persistent toxicity of insecticides against the adult wasps was also investigated under semifield conditions. According to the IOBC (persistence) classification, thiacloprid+deltamethrin, pirimicarb and pymetrozine were classified as moderately persistent (class C), slightly persistent (class B) and short lived (class A), respectively. According to the present study, pymetrozine and pirimicarb had low side effects on L. fabarum at the pupal and adult stages, but thiacloprid+deltamethrin caused deleterious effects on this parasitoid at two stages tested. 

کلیدواژه‌ها [English]

  • Lethal effects
  • Persistency
  • IOBC
  • Lysiphlebus fabarum

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267. 

Acheampong, S. and Stark, J. D. 2004.  Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapaeBiological Control 31(2): 133-137.

Almasi, A., Sabahi, Q., Talebi, Kh. and Mardani, A. 2013. Laboratory evaluation of the toxicity of proteus, pymetrozine, deltamethrin and pirimicarb on lady beetle, Hippodamia vaiegata (Goeze) (Col.: Coccinellidae). Journal of Plant Protection Research 53: 143–147.

Baghery Matin, Sh. 2005. Biology of parasitoid Lysiphlebus fabarum (Hym: Aphidiidae) under laboratory conditions. Msc., thesis. Guilan University.

Biondi, A., Mommaerts, V., Smagghe, G., Vinuela, E., Zappala, L. and Desneux, N. 2012. The non-target impact of spinosyns on beneficial arthropods. Pest Management Science 68: 1523–1536.

Blackman, R. L. and Eastop, V. F. 2000. Aphids on the world's crops, an identification and information guide. Published by the natural history museum. PP. 476.

Desneux, N., Rafalimanana, H. and Kaiser, L. 2004. Dose-response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54: 619–627.

Desneux, N., Fauvergue, X., Dechaume Moncharmont, F. X., Kerhoas, L., Ballanger, Y. and Kaiser, L. 2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology 98: 9–17.

Desneux, N., Decourtye, A. and Delpuech, J. M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52: 81–106.

Godfray, H. C. J. 1994. Parasitoids: behavioral and evolutionary ecology. Published by Princeton University. PP. 248.

Ghadamiary, M. and Talebi Jahromi, KH. 2002. A laboratory investigation of the side-effect of four pesticides on predatory Bug, Orius albidipennis Reut. (Het.: Anthocoridae). Iranian Journal of Agricultural Sciences 33: 651-659.

Han, P., Niu, C. Y. and Desneux, N. 2014. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt. cotton in central China. PloS ONE 9(8): e102980. doi: 10.1371/journal.pone.0102980.

Hassan, S. A. 1994. Activities of the IOBC/WPRS working group pesticides and beneficial organisms. IOBC/WPRS Bull 17: 1–5.

James, D. G. 2003. Pesticide susceptibility of two coccinellids (Stethorus punstum picipes and Harmonia axyridis) important in biological control of mites and aphids in Washington Hops. Biocontrol Science and Technology 13; 253–259.

Jansen, J. P. 1996. Side effects of insecticides on Aphidius rhopalosiphi (Hym.: Aphidiidae) in the laboratory. Entomophaga 41; 37–43.

Jansen, J. P., Defrance, T. and Warnier, A. M. 2011. Side effects of flonicamide and pymetrozine on five aphid natural enemy species. BioControl 56(5): 759-770.

Kanzaki, S. H., and Tanaka, T. 2010. Different responses of a solitary (Meteorus pulchricornis: Braconidae) and a gregarious (Cotesia kariyai: Braconidae) endoparasitoid to four insecticides in the host Pseudaletia separata (Noctuidae: Lepidoptera). Journal of Pesticide Science 35: 1–9.

Kavallieratos, N. G., Tomanovic, Z., Stary, P. and Mitrovski Bogdanovic, A. 2008. Parasitoids (Hymenoptera: Braconidae: Aphidiinae) attacking aphids feeding on Prunoideae and Maloideae crops in southeast Europe: aphidiine–aphid–plant associations and keys. Zootaxa 1793: 47–64.

Liu, T., Zhang, Y., Peng, L., Rojas, P. and Trumble, J. T. 2012. Risk assessment of selectedinsecticides on Tamarixia triozae (Hymenoptera: Eulophidae), a Parasitoid of Bactericera cockerelli (Hemiptera: Trizoidae). Journal of Economic Entomology 105: 490–496.

Longley, M., and Jepson, P. C. 1997. Effects of life stage, substrate, and crop position on the exposure and susceptibility of Aphidius rhopalosiphi Destefani–Perez (Hymenoptera: Braconidae) to deltamethrin. Environmental Toxicology Chemical 16: 1034–1041.

Mahmoudi, M., Sahragard, A. A. and Jalali Sendi, J. 2010. Foraging efficiency of Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae) parasitizing the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae), under laboratory conditions. Journal of Asia–Pacific Entomology 13: 111–116. 

Mardani, A., Sabahi, Q., Rasekh, A. and Almasi, A. 2016. Lethal and sublethal effects of three insecticides on the aphid parasitoid, Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae). Phytoparasitica 44(1): 91-98.

Masuda, K., Ihara, M., Nishimura, K., Sattelle, D. B. and Komai, K. 2001. Insecticidal and neural activities of candidate photoaffinity probes for neonicotinoid binding sites. Bioscience, Biotechnology, and Biochemistry 65(7): 1534-1541.

Medina, P., Morales, J. J., Budia, F., Adan, A., Del Estal, P. and Vinuela, E. 2007. Compatibility of endoparasitoid Hyposoter didymator (Hymenoptera: Ichneumonidae) protected stages with five selected insecticides. Journal of Economic Entomology 100: 1789–1796.

Moens, J., Tirry, L. and Clercq, P. 2012. Susceptibility of cocooned pupae and adults of the parasitoid Microplitis mediator to selected insecticides. Phytoparasitica 40: 5–9.

Morita, M., Ueda, T., Yoneda, T., Koyanagi, T. and Haga, T. 2007. Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Management Science 63: 969–973.

Nemec, V. and Stary, P. 1985. Population diversity in deuterotokous Lysiphlebus species, parasitoids of aphids (Hymenoptera, Aphidiidae). Acta Entomologica Bohemoslovica 82: 170–174.

Nuessly, G. S., Hentz, M. G., Beiriger, R. and  Scully, B. T. 2004. Insects associated with faba bean, Vicia faba (Fabales: Fabaceae), in southern Florida. Florida Entomologist 87: 204211.

Preetha, G., Stanley, J., Suresh, S., Kuttalam, S. and Samiyappan, R. 2009. Toxicity of selected insecticides to Trichogramma chilonis: Assessing their safety in the rice ecosystem. Phytoparasitica 37: 209–215.

Rasekh, A., Michaud, J. P., Kharazi Pakdel, A. and Allahyari, H. 2010. Ant mimicry by an aphid parasitoid, Lysiphlebus fabarum (Marshall) (Hymenoptera: Aphidiidae). Journal of Insect Science 10: 114.

Raymond, B. A., Darby, C. and Douglas, A. E. 2000. Intraguild predators and the spatial distribution of a parasitoid. Oecologia 24: 367372.

Sabahi, Q., Rasekh, A. and Michaud, J. P. 2010. Toxicity of three insecticides to Lysiphlebus fabarum, a parasitoid of the black bean aphid Ahis fabae. Journal of Insect Science 11: 1-8.

Saber, M. 2011. Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology 20: 1476–1484.

Saber, M. and Abedi, Z. 2013. Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. Journal of pest Science 86: 685–693.

Sarfraz, M. and Keddie, B. A. 2005. Conserving the efficacy of insecticides against Plutella xylostella (L.)(Lep., Plutellidae).Journal of Applied Entomology 129: 149157.

Sechser, B., Reber, B. and Bourgeois, F. 2002. Pymetrozine: selectivity spectrum to beneficial arthropods and fitness for integrated pest management. Anzeiger für Schädlingskunde 75(3): 72-77.

Sheikhi Garjan, A. 2000. Study the guidelines of selective function of insecticides in control of Sunn pest, Eurygaster integriceps. PhD. thesis. Islamic Azad University, Iran.

SPSS. 2006. SPSS for windows. SPSS INC., Chicago, Illinois.

Stary, P. 1986. Creeping thistle, Cersium arvense, as a reservoir of aphid parasitoid (Aphidiidae) in agroecosystem. Acta Entomologica Bohemoslovica 97: 339–346.

Sterk, G., Hassan, S. A., Baillod, M., Bakker, F., Bigler, F., Blumel, S., Bogenschutz, H., Boller, E., Bromand, B., Brun, J., Calis, J. N. M., Pelseneer, J. C., Duso, C., Garrido, A., Grove, A., Heimbach, U., Hokkanen, H., Jacas, J., Llwis, G., Moreth, L., Polgar, L., Roversti, L., Petersen, L. S., Sauphanor, B., Schaub, L., Staubli, A., Tuset, J. J., Vainio, A., Veire, M. V. D., Viggiani, G., Vinuela, E. and Vogt. H. 1999. Results of the seventh joint pesticide testing program carried out by the IOBC/WPRS-Working Group ‘Pesticides and Beneficial Organisms. BioControl 44: 99–117.

Symington, C. A. 2003. Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Crop Protection 22: 513–519.

Talebi Jahromi, Kh. 2007. Pesticide toxicology. University of Tehran Publication, Iran. PP. 507.

Umoru, P. A. and Powell, W. 2002. Sub-lethal effects of the insecticides pirimicarb and dimethoate on the aphid parasitoid Diaeretiella rapae (Hymenoptera: Braconidae) when attacking and developing in insecticide-resistant hosts. Biocontrol Science and Technology 12: 605–614.

Vanaclocha, V., Vidal Quist, C., Oheix, S., Monton, H., Planes, L., Catalan, J., Tena, A., Verdu, M. J. and Urbaneja, A. 2012. Acute toxicity in laboratory tests of fresh and aged residues of pesticides used in citrus on the parasitoid Aphytis melinus. Journal Pest Science doi: 10.1007/s10340-012 0448-8.

Volkl, W. and Stechman, D. H. 1998. Parasitism of the black bean aphid (Aphis fabae) by Lysiphlebus fabarum (Hymenoptera: Aphidiidae): the influence of host plant and habitat. Journal of Applied Entomology 122: 201–206.