تاثیر پنبه تراریخته Bt بر ویژگی های زیستی سن شکارگر (Macrolophus pygmaeus Rambur (Hem.: Miridae

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه شهید مدنی آذربایجان

2 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

3 پردیس کشاورزی و منابع طبیعی، دانشگاه تهران.

چکیده

یکی از مهم ­ترین پژوه ش­ها پیرامون گیاهان تراریخته مطالعه تاثیر این گیاهان روی بندپایان غیر هدف است. این گیاهان می­توانند اثرات مستقیم (کشندگی) و غیر مستقیم (از طریق گیاه­خوار) روی دشمنان طبیعی بگذارند. بنابراین در این پژوهش اثر تغذیه از گیاه پنبه Bt و طعمه (عسلک پنبه Bemisia tabaci Gennadius) پرورش یافته روی پنبه Bt، روی سن شکارگر Macrolophus pygmaeus Rambur مورد بررسی قرار گرفت. چهار رژیم غذایی شامل پنبه Bt+ پوره سن سوم عسلک پنبه (گروه یک)، پنبه شاهد+ پوره سن سوم عسلک پنبه (گروه دو)، پنبه Bt (گروه سه) و پنبه شاهد (گروه چهار) برای آزمایش­ ها استفاده شد. بر اساس نتایج به دست آمده، پنبه Bt هم به صورت مستقیم و هم از طریق طعمه، اثر معنی­ داری بر طول دوره نشو و نمای پورگی و میزان تخم­ریزی داشت. طول دوره پورگی روی رژیم غذایی گروه اول، دوم، سوم و چهارم به ­ترتیب 32/0±85/19، 24/0±08/16 ، 45/0±42/29 و 23/0±11/23 روز به دست آمد. هم­چنین، میزان کل تخم­ های گذاشته شده در تیمار پنبه شاهد+ پوره عسلک پنبه به طور معنی ­داری بیشتر از سایر گروه­ ها بود، گرچه بین تیمار پنبه Bt و پنبه شاهد در تعداد تخم گذاشته شده تفاوت معنی­ داری مشاهده نشد. نتایج نشان داد که پنبه تراریخته این قابلیت را دارد که به طور مستقیم یا از طریق تاثیر بر شکار، باعث کاهش شایستگی سن شکارگر شود و در نتیجه در استفاده از گیاهان تراریخته به عنوان یکی از عوامل مدیریت تلفیقی آفات نیاز به دقت بیشتر و ارزیابی­های دقیق­ تر خواهد بود. 

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Bt cotton on biological characteristics of Macrolophus pygmeus Rambur (Hem.: Miridae)

نویسندگان [English]

  • S. Azimi 1
  • S. Rahmani 2
  • A. Ashouri 3
1 Department of Plant Protection, College of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
2 Department of Entomology, Faculty of Agriculture and Natural Resources, Islamic Azad University, Science and Research Branch, Tehran, Iran
3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj
چکیده [English]

Study of the effects of genetically modified plants on non-target arthropods, is one of the most important research on transgenic plants safety. These plants are able to affect on natural enemies, directly and/or indirectly. So, in this study, the effect of feeding on Bt cotton and prey (Bemisia tabaci Gennadius) reared on Bt cotton was determined on predatory bug, Macrolophus pygmeus Rambur. Four diets including Bt-cotton + Bemisia tabaci (first group), non Bt-cotton + Bemisia tabaci (second group), Bt-cotton (third group), non Bt-cotton (forth group) were used in this experiment. The results showed that Bt-cotton significantly affected development time and fecundity of the predator. Developmental times of nymphs in the first, second, third and fourth groups were estimated to be 19.85±0.32, 16.08±0.24, 29.42±0.45 and 23.11±0.23 days, respectively. In addition, mean number of  eggs laid in the non Bt-cotton + Bemisia tabaci treatment were significantly more than other groups (32.778±0.97), although no significant differences were found on fecundity between Bt-cotton and non Bt-cotton treatments. According to the obtained results, the Bt-cotton potentially could have negative effect on the biological parameters of M. pygmeaus severely and applying transgenic plants as one of integrated pest management agent, needs still more experiments and attentions.

کلیدواژه‌ها [English]

  • Transgenic plant
  • Cry
  • Macrolophus pygmeaus
  • Bemisia tabaci
Aranda, E., Sanchez, J., Peferoen, M., Guereca, L. and Bravo, A. 1996. Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of InvertebratePathology 68: 203–212.

Ashouri, A., Michaud, D. and Cloutier, C. 2001. Unexpected effects of different potato resistance factors to the Colorado potato beetle (Coleoptera: Chrysomelidae) on the Potato Aphid (Homoptera: Aphididae). Environmental Entomology 30: 524-532.

Benfarhat-Touzri, D., Saadaoui, M., Abdelkefi-Mesrati, L., Saadaoui, I., Azzouz, H. and Tounsi, S. 2013. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. Journal of InvertebratePathology 112: 142–145.

Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M. H., Nielsen-Leroux, C., Charles, J. F. and Pauron, D. 2002. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proceeding of the National Academy of Sciences 99: 5830–5835.

Forcada, C., Alcacer, E., Garcera, M. D., Tato, A. and Martinez, R. 1999. Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: proteolytic and SEM study of the larval midgut. Archives of InsectBiochemistry and Physiology 42: 51-63.

Gahan, L. J., Gould, F. and Heckel, D. G. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-860.

Goulart, R. M., De Bortoli, S. A., Vacari, A. M., Laurentis, V. L., Veiga, A. C. P.,De Bortoli, C. P. and Polanczyk, R. A. 2015. Effect of Bacillus thuringiensis on the biological characteristics of the predator Orius insidiosus Say (Hemiptera: Anthocoridae) feeding on eggs of Plutella xylostella L. (Lepidoptera: Plutellidae). BioAssay 10(2): 1-7.

Guo, J. Y., Wan, F. H. and Dong, L. 2004. Survival and development of immature Chrysopa sinica and Propylaea japonica feeding on Bemisia tabaci propagated on transgenic Bt cotton. Chinese Journal of Biological Control 20: 164-169.

Han, Y., Wang, H., Chen, J., Cai, W. and Hua, H. 2015. No impact of transgenic cry2Aa rice on Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens, in laboratory tests. Biological Control 82: 46–51.

Hillbeck, A., Moar, W. J., Pusztai-Carey, M., Filippini, A. and Bigler, F. 1999. Prey mediated effects of Cry1Ac toxin and Cry2Ac protoxin on the predator Chrysoperla carnea. Entomologia Experimentalis etApplicata 91(2): 305-316.

Hilbeck, A. and Schmidt, J. E. U. 2006. Another view on Bt proteins-How specific are they and what else might they do. Biopesticides International 2(1): 1–5.

Hua, G., Masson, L., Jurat-Fuentes, J. L., Schwab, G. and Adang, M. J. 2001. Binding analyses of Bacillus thuringiensis cry d-endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Applied and Environmental Microbiology 67(2): 872-879.

Kaur, R., Sharma, A., Gupta, D., Kalita, M. and Bhatnagar, R. K.  2014. Bacillus thuringiensis toxin, Cry1C interacts with 128HLHFHLP134 region of aminopeptidase N of agricultural pest, Spodoptera litura. Process Biochemistry 49(4): 688–696.

Khajehpour, M. 2004. Production of Industrial Plants. 1st Ed., Jehad-e-Daneshgahi Isfahan Press, Isfahan, Iran, ISBN: 961-6122-63-9, p. 335.

Kumar, R., Tian, J. C., Naranjo, S. E. and Shelton, A. M. 2014. Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae), Journal of Economic Entomology 107(3): 927-932.

Li, Y. H. and Romeis, J. 2010. Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biological control 53: 337-344.

Men, X. Y., Ge, F., Liu, X. H. and Yardim, E. N. 2003. Diversity of arthropod communities in transgenic Bt cotton and nontransgenic cotton agro ecosystems. Environmental Entomology32(2): 270-275.

Mohan, M. and Gujar, G. T. 2003. Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus) to insecticides and role of detoxification enzymes. Crop Protection 22: 3495-504.

Naranjo, S. 2005. Long–term assessment of the effects of transgenic Bt cotton on the function of the natural enemy community. Environmental Entomology 34(5):1211–1223.

Oppert, B., Kramer, K. J., Beeman, R. W., Johnson, D. and Mcgaughey, W. H. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis. Journal of Biological Chemistry 272: 23473-23476.

Perdikis, D. Ch. and Lykouressis, D. P. 2001. Description of the egg and nymphal instars of Macrolophus pygmaeus Rambur (Hem: Miridae). Entomologia Hellenica 14: 32–40.

Pilcher, C. D., Rice, M. E. and Obrycki, J. J. 2005. Impact of transgenic Bacillus thuringiensis corn and crop technology on five non-target arthropods. Environmental Entomology 34(5): 1302-1316.

Ponsard, S., Gutierrez, A. P. and Mills, N. J. 2002. Effects of Bt toxin (Cry1Ac) in transgenic cotton on the adult longevity of four heteropteran predators. Environmental Entomology 31(6): 1197-1205.

Rahman, M. M., Roberts, H. L. S., Sarjan, M., Asgari, S. and Schmidt, O. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. PNAS 101: 2696–2699.

SAS Institute. 2003. SAS/STAT. Guide for Personal Computers. Ver. 6.12. Cary (NC): SAS Institute.

Schoenly, K. G., Cohen, M. B., Barrion, A. T., Gaolach, W. Z. B. and Viajante, V. D. 2003. Effects of Bacillus thuringiensis on non-target herbivore and natural enemy assemblages in tropical irrigated rice. Environmental Biosafety Research 3: 181–206.

Sears, M. K., Hellmich, R. L., Stanley-Horn, D. E., Oberhauser, K. S., Pleasants, J. M., Mattila, H. R., Siegfried, B. D. and Dively, G. P. 2001. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proceeding of the National Academy of Science of the USA 98: 11937-11942.

Sharma, H., Sharma, K., Seetharama, N. and Ortiz, R. 2000. Prospects for transgenic resistance to insects. Electronic Journal of Biotechnology 3:76–95.

Sivakumar S., Rajagopal R., Venkatesh G. R., Srivastava A. and Bhatnagar R. K. 2007. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 Cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. Journal of Biological Chemistry 282(10): 7312–7319.

Strickl, G. R. and Annells, A. J. 2005. The seasonal dynamics of arthropods in conventional, Ingard and Bollgard II cotton genotypes in a winter production system at Kununurra, Bentley Delivery Centre WA 6983 © State of Western Australia, pp. 1-13.

Su, H. H., Tian, J. C., Naranjo, S. E., Romeis, J., Hellmich R. L. and Shelto, A. M. 2015. Bacillus thuringiensis plants expressing Cry1Ac, Cry2Ab and Cry1F are not toxic to the assassin bug, Zelus renardii. Journal of Applied Entomology 139: 23–30.

Talaei-Hassanlouei R., Zeinalian Mehrabani, N. and Ezzati Tabrizi, R. 2012. Natural enemies biology of greenhouse pests. University of Tehran Press, p. 265.

Tian, J. C., Wang, X. P., Long, L. P., Romeis, J., Naranjo, S. E., Hellmich, R. L., Wang, P., Earle E.D. and Shelton A. M. 2013. Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PLoS One 8(3): e60125.

Tohidfar, M. and Kaviani, M. 2010. Biotechnology of cotton and its biosafety aspects. Published by: Agricultural Biotechnology Research Institute of Iran, Karaj, Iran. P. 232.

Tohidfar, M., Ghareyazie, B., Nosavi, M., Yazdani, Sh. and Golabchian, R. 2008. Agrobacterium-e mediated transformated of cotton (Gossypium hirsutum) using a synthetic Cry 1Ab gene for enhanced resistance against Heliothis armigera. 2008. Iranian Journal of Biotechnology 6(3): 164-173.

Torres, J. B., Ruberson, J. R. and Adnag, M. J. 2006. Expression of Bacillus thuringiensis Cry1Ab protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agricultural and Forest Entomology 8: 191-202.

Torres, J. B. and Ruberson, J. R. 2005. Canopy and grounddwelling Predatory arthropods in commercial Bt And nonBt cotton fields: Patterns and mechanism. Environmental Entomology 34(5):1242-1256.

Torres, J. B. and Ruberson, J. R. 2008. Interaction of Bacillus thuringiensis Cry1Ab toxin in genetically engineered cotton with predatory heteropterans. Transgenic Research 17: 345–354.

Valaitis, A. P. and Podgwaite, J. D. 2013. Bacillus thuringiensis Cry1A toxin-building glicoconjugates present on the brushborder membrane and in the peritrophic membrane of theDouglas-fir tussock moth are peritrophins. Journal of InvertebratePathology 112: 1–8.

Zhang, X., Candas, M., Griko, N. B., Taussig, R. andBulla, L. A. 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceeding of the National Academy of Science of the USA 103: 9897–9902.

Zhang, X., Griko, N. B., Corona, S. K. and Bulla, L. A. 2008. Enhanced exocytosis of the receptor BT-R1 induced by Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. B. Comparative Biochemistry 149: 581–588.