اثرات هم‌افزایی سه گونه گیاه کلم و Beauveria bassiana روی برخی از شاخص‌های رشدی، تغذیه‌ای و فعالیت آنزیمی شب‌پره‌ پشت الماسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه پزشکی، دانشکده کشاورزی دانشگاه گیلان، رشت، ایران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

چکیده

شب‌پره‌ پشت الماسی Plutella xylostella (L.) (Lepidoptera: Plutellidae) از آفات مهم تیره کلمیان در جهان است. در مطالعه‌ حاضر تأثیر غلظت زیرکشنده LC20 قارچ Beauveria bassiana (Balsamo) Vuillemin روی لاروهای تغذیه شده با سه گونه/رقم؛ کلم چینی (Brassica rapa subsp. pekinensis)، کلم پیچ (B. oleracea var. capitata) و کلم قرمز (B. oleracea var. capitata f. rubra) ارزیابی شد. پرورش در دمای 1±25 درجه سلسیوس، رطوبت نسبی 5±60 درصد و دوره نوری 16 ساعت روشنایی: 8 ساعت تاریکی انجام شد. ابتدا غلظت LC20  توسط بررسی اثر پنج غلظت 104، 105، 106، 107 و 108 کنیدی در میلی‌لیتر به دست آمد. نتایج نشان‌دهنده سمیت وابسته به دوز قارچ بیماری‌زا روی لاروهای سن سوم بود. لاروهای آلوده به غلظت زیرکشنده B. bassiana (104 × 1/34 کنیدی/ میلی‌لیتر) در مقایسه با شاهد، رشد طولانی‌تر، نرخ زنده‌مانی کم‌تر و طول عمر حشرات‌کامل کوتاه‌تر و باروری کم‌تری را نشان دادند. همچنین کاهش شاخص‌های تغذیه‌ای شامل درصد کارایی تبدیل غذای خورده شده (ECI%)، درصد کارایی غذای هضم شده(ECD%) ، نرخ مصرف نسبی (RCR)، نرخ رشد نسبی (RGR)، درصد قابلیت هضم نسبی (AD%) و کاهش فعالیت آنزیم‌های گوارشی (آمیلاز و پروتئاز) در این تیمار­ها مشاهده شد. بیشترین شدت بیمارگری در لاروهایی مشاهده شد که از کلم قرمز تغذیه کرده بودند که کم­ترین عملکرد رشد، شاخص تغذیه‌ای و فعالیت آنزیمی را در هنگام آلودگی به B. bassiana نشان دادند. در کل، کلم چینی مناسب‌ترین میزبان و کلم قرمز نامطلوب­ترین میزبان برای رشد لاروها بودند. این نتایج اطلاعات لازم را برای انتخاب روش­های مناسب مدیریت یکپارچه شب‌پره‌ پشت الماسی فراهم می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Synergistic effects of three cabbage plant species and Beauveria bassiana on some growth, nutritional indices and enzymatic activity of diamondback moth

نویسندگان [English]

  • Mashaallah Belbasi 1
  • Jalal Jalali Sendi 1
  • Alireza Bandani 2
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Department of Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
چکیده [English]

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major pest of Brassicaceae worldwide. In this study, the effect of sublethal concentration LC20 of Beauveria bassiana (Balsamo) Vuillemin on P. xylostella larvae feeding on Chinese cabbage (Brassica rapa subsp. pekinensis), savoy cabbage (B. oleracea var. capitata) and red cabbage (B. oleracea var. capitata f. rubra) was evaluated. Rearing was carried out at 25 ± 1 °C, relative humidity of 60 ± 5% and a photoperiod of 16 hours light: 8 hours dark. The LC20 was obtained by examining the effect of five concentrations of 104, 105, 106, 107 and 108 conidia/ml. The results indicated a dose-dependent toxicity of pathogenic fungus on third instar larvae. Larvae infected with sublethal concentrations of B. bassiana (1.34 × 104 conidia/ml) exhibited prolonged development, reduced survival rates and shorter adult longevity, and lower fecundity compared to the control. Also, a decrease in nutritional indices including efficiency of conversion of ingested food (ECI%), efficiency of conversion of digested food (ECD%), relative consumption rate (RCR), relative growth rate (RGR), approximate digestibility (AD%) and a decrease in digestive enzyme activity (amylase and protease) were observed in these treatments. The most severe pathogenicity was observed in larvae that were fed red cabbage, which exhibited the lowest growth performance, nutritional indices, and enzyme activity when infected with B. bassiana. Overall, Chinese cabbage proved to be the most appropriate host while red cabbage was the least suitable host for larval development. These results provide information for selecting appropriate integrated management strategies for the diamondback moth.

کلیدواژه‌ها [English]

  • Digestive enzyme
  • Life cycle
  • Nutritional indices
  • Plutella xylostella
Afroz, M., Rahman, M., & Amin, R. (2021). Insect plant interaction with reference to secondary metabolites: A review. Agricultural Reviews42(4), 427-433.
Agboyia, L. K., Ketoh, G. K., Kpindou, O. K. D., Martin, T., Glitho, I. A., & Tamὸ, M. (2020). Improving the efficiency of Beauveria bassiana applications for sustainable management of Plutella xylostella (Lepidoptera: Plutellidae) in West Africa. Biological Control, 144(104), p.104233. DOI: https://doi.org/10.1016/j.biocontrol.2020.104233.
Asmoro, P. P., & Winasa, I. W. (2021). Nutritional indices and feeding preference of the Plutella xylostella L. (Lepidoptera: Yponomeutidae) in several Brassicaceae plants. In IOP Conference Series: Earth and Environmental Science, 948(1), 012040. DOI: https://doi.org/10.1088/1755-1315/948/1/012040.
Batcho, A., Ali, M., Samuel, A. O., Shehzad, K., & Bushra Rashid. (2018). Comparative study of the effects of five Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) strains on cabbage moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). Cogent Environmental Science, 4, 1477542. DOI: https://doi.org/10.1080/23311843.2018.1477542.
Bathina, P., & Bonam, R. (2020). Effect of endophytic isolates of Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metchnikoff) Sorokin on Plutella xylostella (L.) (Lepidoptera: Plutellidae) in cabbage. Egyptian Journal of Biological Pest Control 30(1), p.142.  DOI: https://doi.org/10.1186/s41938-020-00342-w.
Bernfeld, P. (1955). Amylases, α and β. Methods in Enzymology, 1, 149-158. DOI: https://doi.org/10.1016/0076-6879(55)01021-5.
Borzoui, E., Bandani, A. R., Goldansaz, S. H., & Talaei-Hassanlouei, R. (2018). Dietary protein and carbohydrate levels affect performance and digestive physiology of Plodia interpunctella (Lepidoptera: Pyralidae). Journal of Economic Entomology, 111(2), 942–949. DOI: https://doi.org/10.1093/jee/tox360.
Dannon, H. F., Dannon, A. E., & Douro-Kpindou, O. K. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3, 1-21. DOI: https://doi.org/10.1186/s42397-020-00061-5.
Dehghan, A., Rounagh-Ardakani, H., Mohammadzadeh, A., Mohammadzadeh, M., Mohammadzadeh, M., & Borzoui, E. (2023). Induction of resistance, enzyme activity, and phytochemicals in canola plants treated with abscisic acid elevated based on nutrient availability: a case study on Brevicoryne brassicae L. (Hemiptera: Aphididae), Journal of Insect Science, 23(3), p. 17. DOI: https://doi.org/10.1093/jisesa/iead037.
Duisembecov, B. A., Dubovskiy, I. M., & Glupov, V. V. (2017). Effect of plant secondary metabolites on susceptibility of insects to entomopathogenic microorganisms. Contemporary Problems of Ecology10, 286-292. DOI: https://doi.org/10.1134/S1995425517030052.
Ekholm, A., Tack, A. J., Pulkkinen, P., & Roslin, T. (2020). Host plant phenology, insect outbreaks and herbivore communities–The importance of timing. Journal of Animal Ecology89(3), 829-841. DOI: https://doi.org/10.1111/1365-2656.13151.
Farrar, R. R., Barbour, J. D., & Kennedy, G. G. (1989). Quantifying food consumption and growth in insects. Annals of the Entomological Society of America, 82, 593-598. DOI: https://doi.org/10.1093/aesa/82.5.593.
Fathipour, Y., Kianpour, R., Bagheri, A., Karimzadeh, J., Hosseini Naveh, V., & Mehrabadi, M. (2020). Targeting Plutella xylostella digestive enzymes by applying resistant Brassicaceae host cultivars. Journal of Crop Protection9(1), 65-79. DOI: http://jcp.modares.ac.ir/article-3-31365-en.html.
Garcia-Carreno, F. L., & Haard. N. (1993). Characterization of protease classes in langostilla Pleuroncodes planipes and crayfish Pacifastacus astacus extracts”, Journal of Food Biochemistry, 17, 97-113. DOI: https://doi.org/10.1111/j.1745-4514.1993.tb00864.x.
Guo, C. T., Luo, X. C., Ying, S. H., & Feng, M. G. (2022). Differential roles of five fluffy genes (flbA–flbE) in the lifecycle in vitro and in vivo of the insect–pathogenic fungus Beauveria bassianaJournal of Fungi8(4), 334. DOI: https://doi.org/10.3390/jof8040334.
Hasheminia, S. M., Sendi, J. J., Jahromi, K. T., & Moharramipour, S. (2011). The effects of Artemisia annua L. and Achillea millefolium L. crude leaf extracts on the toxicity, development, feeding efficiency and chemical activities of small cabbage Pieris rapae L. (Lepidoptera: Pieridae). Pesticide Biochemistry and Physiology99(3), 244-249. DOI: https://doi.org/10.1016/j.pestbp.2010.12.009.
Isman, M. B. (2020). Botanical insecticides in the twenty-first century—fulfilling their promise? Annual Review of Entomology, 65(1), 233-249. DOI: https://doi.org/10.1146/annurev-ento-011019-025010.
Jafary-Jahed, M., Razmjou, J., Nouri-Ganbalani, G., Naseri, B., Hassanpour, M., & Leppla, N. C. (2019). Life table parameters and oviposition preference of Plutella xylostella (Lepidoptera: Plutellidae) on six brassicaceous crop plants. Journal of Economic Entomology112(2), 932-938. DOI: https://doi.org/10.1093/jee/toy384.
Jalaeian, M., Mohammadzadeh, M., Mohammadzadeh, M., & Borzoui, E. (2021). Rice cultivars affect fitness-related characteristics and digestive physiology of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Stored Products Research, 93, 101821. DOI: https://doi.org/10.1016/j.jspr.2021.101821.
Jonas, J. L., & Joern, A. (2013). Dietary selection and nutritional regulation in a common mixed‐feeding insect herbivore. Entomologia Experimentalis et Applicata148(1), 20-26. DOI: https://doi.org/10.1111/eea.12065.
Jiang, W., Peng, Y., Ye, J., Wen, Y., Liu, G., & Xie, J. (2020). Effects of the entomopathogenic fungus Metarhizium anisopliae on the mortality and immune response of Locusta migratoriaInsects11(1), 36. DOI: https://doi.org/10.3390/insects11010036.
Karimzadeh, J., Bonsall, M. B., & Wright, D. J. (2004). Bottom‐up and top‐down effects in a tritrophic system: the population dynamics of Plutella xylostella (L.)–Cotesia plutellae (Kurdjumov) on different host plants. Ecological Entomology, 29(3), 285-293. DOI: https://doi.org/10.1111/j.0307-6946.2004.00609.x.
Keerthi, M. C., & Suroshe, S. S. (2024). Effect of host plants on the fitness and demographic parameters of the diamondback moth, Plutella xylostella (L.) using age-stage, two-sex life tables. Journal of Plant Diseases and Protection, 131, 143-154. DOI: https://doi.org/10.1007/s41348-023-00815-8.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
Manuwoto, S., & Scriber, J. M. (1982). Consumption and utilization of three maize genotypes by the southern armyworm. Journal of Economic Entomology, 75, 163-7. DOI: https://doi.org/10.1093/jee/75.2.163.
Marchioro, C. A., & Foerster, L. A. (2014). Preference‒performance linkage in the diamondback moth, Plutella xylostella, and implications for its management. Journal of Insect Science 14(85). DOI: http://www.insectscience.org/14.85.
Mascarin, G. M., Lopes, R. B., Delalibera, I., Fernandes, E. K. K., Luz, C., & Faria, M. (2019). Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, 165, 46–-53. DOI: https://doi.org/10.1016/j.jip.2018.01.001.
Mishra, S., Kumar, P., & Malik, A. (2015). Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. Journal of Parasitic Diseases39, 697-704. DOI: https://doi.org/10.1007/s12639-013-0408-0.
Nasr, M., Sendi, J. J., Moharramipour, S., & Zibaee, A. (2017). Evaluation of Origanum vulgare L. essential oil as a source of toxicant and an inhibitor of physiological parameters in diamondback moth, Plutella xylustella L. (Lepidoptera: Pyralidae). Journal of the Saudi Society of Agricultural Sciences, 16(2), 184-190. DOI: https://doi.org/10.1016/j.jssas.2015.06.002.
Nithya, P. R., Manimegalai, S., Nakkeeran, S., & Mohankumar, S. (2021). Comparative study of the ditrophic interaction between Beauveria bassiana and Plutella xylostella. Biotechnology, 11(5), 223. DOI: http://doi: 10.1007/s13205-021-02760-5.
Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z., & Kamita, S. G. (2016). Individual and combined effects of Bacillus thuringiensis and azadirachtin on Plodia interpunctella Hübner (Lepidoptera: Pyralidae), Journal of Insect Science, 16(1), 95. DOI: https://doi.org/10.1093/jisesa/iew086.
Nouri-Ganbalani, G., Borzoui, E., Nouri, A., & Tajmiri, P. (2017). Effect of different potato cultivars on nutritional indices and activity of some digestive enzymes of Leptinotarsa decemlineata (Col.: Chrysomelidae). Iranian Journal of Plant Protection Science, 48(1), 109-118. (In Persian with English abstract). DOI: https://doi.org/10.22059/ijpps.2017.226533.1006760.
Nouri-Ganbalani, G., Borzoui, E., Shahnavazi, M., & Nouri, A. (2018). Induction of resistance against Plutella xylostella (L.) (Lep.: Plutellidae) by jasmonic acid and mealy cabbage aphid feeding in Brassica napus L. Frontiers in Physiology, 9, 859. DOI: https://doi.org/10.3389/fphys.2018.00859.
Nouri-Ganbalani, G., Naseri, B., Majd-Marani, S., & Borzoui, E. (2020). Canola cultivars affect nutrition and cold hardiness of Plutella xylostella (L.) (Lepidoptera: Plutellidae). International Journal of Tropical Insect Science40, 741-750. DOI: https://doi.org/10.1007/s42690-020-00125-8.
Parra, J. R., Panizzi, A. R., & Haddad, M. L. (2012). Nutritional indices for measuring insect food intake and utilization, In: Insect Bioecology and Nutrition for Integrated Pest Management. Panizzi, A. R. & Parra, J. R. P. (Eds.). CRC Press, Boca Raton, FL, USA. p. 13-50. eBook ISBN: 9780429151088.
Philips, C. R., Fu, Z., Kuhar, T. P., Shelton, A. M., & Cordero, R. J. (2014). Natural history, ecology, and management of Diamondback moth (Lepidoptera: Plutellidae), with emphasis on the United States, Journal of Integrated Pest Management, 5(3), D1–-D11. DOI: https://doi.org/10.1603/IPM14012.
Polenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., & Klementeva, T. N. (2021). Influence of Bacillus thuringiensis and Avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3), e0248704. DOI: https://doi.org/10.1371/journal.pone.0248704.
Poprawski, T. J., Greenberg, S. M., & Ciomperlik, M. A. (2000) Effect of host plant on Beauveria bassiana and Paecilomyces fumosoroseus-induced mortality of Trialeurodes vaporariorum (Hom., Aleyrodidae). Environmental Entomology, 29, 1048-1053. DOI: https://doi.org/10.1603/0046-225X-29.5.1048.
Prasad, A. K., & Mukhopadhyay, A. (2016). Growth, nutritional indices and digestive enzymes of Hyposidra infixaria Walker (Lepidoptera: Geometridae) on artificial and natural (tea) diets. Journal of Asia-Pacific Entomology, 19(1), 167–-172. DOI: https://doi.org/10.1016/j.aspen.2015.12.009.
Saeed, R., Sayyed, A. H., Shad, S. A., & Zaka, S. M. (2010). Effect of different host plants on the fitness of diamond-back moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Protection, 29(2), 178-182. DOI: https://doi.org/10.1016/j.cropro.2009.09.012.
Satyanarayana, C., & Arunakumara, K. T. 2016. Evaluation of entomopathogenic fungi and essential oils against diamondback moth, Plutella xylostella (L.). Pest Management in Horticultural Ecosystems, 22(2), 151-157.
Seyed-Talebi, F. S., Safavi, S. A., Talaei Hassanloui, R., & Bandani, A. 2020. Variable induction of cuticle-degrading enzymes of Beauveria bassiana isolates in the presence of different insect cuticles. Journal of Crop Protection, 9(4), 563-576. DOI: http://jcp.modares.ac.ir/article-3-40182-en.html.
Shehzad, M., Tariq, M., Mukhtar, T., & Gulzar, A. (2021). On the virulence of the entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales), against the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Egyptian Journal of Biological Pest Control, 31, 86. DOI: https://doi.org/10.1186/s41938-021-00428-z.
Teimouri, N., Jalali Sendi, J., Zibaee, A., & Khosravi, R. (2015). Feeding indices and enzymatic activities of carob moth Ectomyelois ceratoniae (Zeller) (Lepidoptera: pyrallidae) on two commercial pistachio cultivars and an artificial diet. Journal of the Saudi Society of Agricultural Sciences, 14, 76-82. DOI: https://doi.org/10.1016/j.jssas.2013.08.003.
Telang, M. A., Giri, A. P., Sainani, M. N., & Gupta, V. S. (2005). Characterization of two midgut proteinases of Helicoverpa armigera and their interaction with proteinase inhibitors. Journal of Insect Physiology51(5), 513-522. DOI: https://doi.org/10.1016/j.jinsphys.2004.12.004.
Thungrabeab, M., Blaeser, P., & Sengonca, C. (2006). Effect of temperature and host plant on the efficacy of different entomopathogenic fungi from Thailand against Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysanoptera: Thripidae) in the laboratory. Journal of Plant Diseases and Protection, 113(4), 181-187.
Tian, J., Diao, H., Liang, L., Arthurs, S., Hao, C., Mascarin, G. M., & Ma, R. (2016). Host plants influence susceptibility of whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) to the entomopathogenic fungus Isaria fumosorosea (Hypocreales: Cordycipitaceae). Biocontrol Science and Technology, 26(4), 528-538. DOI: https://doi.org/10.1080/09583157.2015.1129393.
Vertyporokh, L., Hułas‐Stasiak, M., & Wojda, I. (2020). Host–pathogen interaction after infection of Galleria mellonella with the filamentous fungus Beauveria bassianaInsect Science27(5), 1079-1089. DOI: https://doi.org/10.1111/1744-7917.12706.
Vivekanandhan, P., Swathy, K., Lucy, A., Sarayut, P., & Patcharin, K. (2023). Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Frontiers in Cellular and Infection Microbiology, 13, 1254475. DOI: https://doi.org/10.3389/fcimb.2023.1254475.
Wakil, W., Kavallieratos, N. G., Ghazanfar, M. U., & Usman, M. (2022). Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. Environmental Science and Pollution Research29(23), 34912-34929. DOI: https://doi.org/10.1007/s11356-021-17527-x.
Waldbauer, G. P. (1968). The consumption and utilization of food by insects. Advance in Insect Physiology, 5, 229-88. DOI: https://doi.org/10.1016/S0065-2806(08)60230-1.
Yang, F. Y., Chen, J. H., Ruan, Q. Q., Wang, B. B., Jiao, L., Qiao, Q. X., He, W. Y., & You, M. S. (2021). Fitness comparison of Plutella xylostella on original and marginal hosts using age-stage, two-sex life tables. Ecology and Evolution, 11, 9765-9775. DOI: https://doi.org/10.1002/ece3.7804.
Yazdanfar, H., Ghodskhah-Daryaei, M., & Jalali Sendi, J. (2016). The effects of host plants on the feeding indices and chemical activities of elm leaf beetle, Xanthogaleruca luteola (Muller) (Coleoptera: Chrysomelidae). Iran Agricultural Research, 35(1), 81-87. DOI: https://doi.org/10.22099/iar.2016.3697.
Zhang, Z., Zheng, C., Keyhani, N. O., Gao, Y., & Wang, J. (2021). Infection of the Western Flower thrips, Frankliniella occidentalis, by the insect pathogenic fungus Beauveria bassianaAgronomy11(10), 1910. DOI: https://doi.org/10.3390/agronomy11101910.
Zhang, A., Li, T., Yuan, L., Tan, M., Jiang, D., & Yan, S. (2023). Digestive characteristics of Hyphantria cunea larvae on different host plants. Insects, 14(5), 463. DOI: https://doi.org/10.3390/insects14050463.
Zhao, A., Yuan, X., Hu, D., Leng, C., Li, Y., Wang, P., & Li, Y. (2019). The effect of host plant on the development and larval midgut protease activity of Plutella xylostella (Lepidoptera: Plutellidae). Phytoparasitica47, 475-483. DOI: https://doi.org/10.1007/s12600-019-00746-x.
Zimmermann, G. (2007). Review on safety of the entomopathogenic fungus Metarhizium Anisopliae. Biocontrol Science and Technology, 17, 879-920. DOI: https://doi.org/10.1080/09583150701593963.