Abrahamson, W. G., Hunter, M. D., Melika, G., & Price, P. W. (2003). Cynipid gall-wasp communities correlate with oak chemistry.
Journal of Chemical Ecology, 29, 209-223.
DOI: https://doi.org/10.1023/A:1021993017237
Allison, S. D., & Schultz, J. C. (2005). Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology, 31, 151-166. DOI: https://doi.org/10.1007/s10886-005-0981-5
AOAC. (1995). Official methods of analysis 16th Ed. Association of official analytical chemists. Washington DC, USA.
Bellows, E., Heatley, M., Shah, N., Archer, N., Giles, T., & Fray, R. (2024). Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. Plant Biology, 26(5),798-810. DOI: https://doi.org/10.1111/plb.13670
Ben-Shlomo, R., Talal, S., & Inbar, M. (2022). The dynamics and the timeline of speciation in the gall-forming aphid Geoica spp. within and among pistacia host tree species. Molecular Phylogenetics and Evolution, 174, 107549. DOI: https://doi.org/10.1016/j.ympev.2022.107549
Castro, A., Oliveira, D., Moreira, A., Lemos-Filho, J., & Isaias, R. (2012). Source–sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). South African Journal of Botany, 83, 121-126. DOI: https://doi.org/10.1016/j.sajb.2012.08.007
Chen, J. (2024). It's gall relative: metabolic profiling of two morphologically distinct oak leaf galls induced by cynipid wasps. Plant Physiology, 195(1), 248-250. DOI: https://doi.org/10.1093/plphys/kiae032
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., King-Jones, K., & Chen, S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., & Chen, M. S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Costa-Rezende, U., Fernandes-Cardoso, J. C., Hanson, P., & Oliveira, D. C. (2021). Gall traits and galling insect survival in a multi-enemy context. Revista de Biología Tropical, 69(1), 291-301. DOI: https://doi.org/10.15517/rbt.v69i1.42826
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. DOI: https://doi.org/10.3390/ijms23052690
Elhamouly, N. A., Hewedy, O. A., Zaitoon, A., Miraples, A., Elshorbagy, O. T., Hussien, S., El-Tahan, A., & Peng, D. (2022). The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Frontiers in Plant Science, 13, 1044896. DOI: https://doi.org/10.3389/fpls.2022.1044896
Gätjens-Boniche, O. (2019). The mechanism of plant gall induction by insects: revealing clues, facts, and consequences in a cross-kingdom complex interaction. Revista de Biología Tropical, 67(6), 1359-1382. DOI: https://doi.org/10.15517/rbt.v67i6.33984
Harris, M. O., & Pitzschke, A. (2020). Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 225(5), 1852-1872. DOI: https://doi.org/10.1111/nph.16340
Hearn, J., Blaxter, M., Schönrogge, K., Nieves-Aldrey, J. L., Pujade-Villar, J., Huguet, E., Drezen, J. M., Shorthouse, J. D., & Stone, G. N. (2019). Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genetics, 15(11), e1008398. DOI: https://doi.org/10.1371/journal.pgen.1008398
Hoffmann, F., Allers, K., Rombey, T., Helbach, J., Hoffmann, A., Mathes, T., & Pieper, D. (2021). Nearly 80 systematic reviews were published each day: observational study on trends in epidemiology and reporting over the years 2000-2019. Journal of Clinical Epidemiology, 138, 1-11. DOI: https://doi.org/10.1016/j.jclinepi.2021.05.022
Huang, M. Y., Huang, W. D., Chou, H. M., Chen, C. C., Chen, P. J., Chang, Y. T., & Yang, C. M. (2015). Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminata. BMC Plant Biology, 15, 1-12. DOI: https://doi.org/10.1186/s12870-015-0446-0
Ikai, N., & Hijii, N. (2007). Manipulation of tannins in oaks by galling cynipids. Journal of Forest Research, 12, 316-319. DOI: https://doi.org/10.1007/s10310-007-0016-x
Kanjana, N., Li, Y., Shen, Z., Mao, J., & Zhang, L. (2024). Effect of phenolics on soil microbe distribution, plant growth, and gall formation. Science of the Total Environment, 924, 171329. DOI: https://doi.org/10.1016/j.scitotenv.2024.171329
Leach, C. K. (1986). The phenolic contents of some British cynipid galls. Cecidology, 1, 10-2. DOI: https://doi.org/10.1007/978-94-017-0273-7
Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 324791. DOI: https://doi.org/10.3389/fevo.2018.00064
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Portland Press Ltd.
Lombardero, M. J., & Ayres, M. P. (2022). Defensive patterns of chestnut genotypes (Castanea spp.) against the gall wasp, Dryocosmus kuriphilus. Frontiers in Forests and Global Change, 5, 1046606. DOI: https://doi.org/10.3389/ffgc.2022.1046606
Makkar, H. P. (2003). Quantification of tannins in tree and shrub foliage: A laboratory manual. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-017-0273-7
Markel, K., Novak, V., Bowen, B. P., Tian, Y., Chen, Y. C., Sirirungruang, S., Zhou, A., Louie, K. B., Northen, T. R., Eudes, A., & Shih, P. M. (2024). Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls. Plant Physiology, 195(1), 698-712. DOI: https://doi.org/10.1093/plphys/kiae001
Martini, V., Moreira, A. S. F. P., Kuster, V. C., & Oliveira, D. C. (2020). Photochemical performance and source-sink relationships in galls induced by Pseudophacopteron longicaudatum (Hemiptera) on leaves of Aspidosperma tomentosum (Apocynaceae). Photosynthetica, 58(3), 827-835. DOI: https://doi.org/10.32615/ps.2020.033
Meyer-Rochow, V. B. (2022). Can molecularly engineered plant galls help to ease the problem of world food shortage (and our dependence on pollinating insects)?. Foods, 11(24), 4014. DOI: https://doi.org/10.3390/foods11244014
Miller III, D. G., & Raman, A. (2019). Host–plant relations of gall-inducing insects. Annals of the Entomological Society of America, 112(1), 1-19. DOI: https://doi.org/10.1093/aesa/say034
Motta, S., Guaita, M., Cassino, C., & Bosso, A. (2020). Relationship between polyphenolic content, antioxidant properties and oxygen consumption rate of different tannins in a model wine solution. Food Chemistry, 313, 126045. DOI: https://doi.org/10.1016/j.foodchem.2019.126045
Murakami, R., Ushima, R., Sugimoto, R., Tamaoki, D., Karahara, I., Hanba, Y., Wakasugi, T., & Tsuchida, T. (2021). A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant. Scientific Reports, 11(1), 13013. DOI: https://doi.org/10.1038/s41598-021-92417-3
Nyman, T., & Julkunen-Tiitto, R. (2000). Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences, 97(24), 13184-13187. DOI: https://doi.org/10.1073/pnas.230294097
Pandey, K., & Kate, A. S. (2024). Comparative analysis of foliar galls and ungalled leaves of Alstonia scholaris with a focus on tissue ultrastructure and phytochemistry. Biochemical Systematics and Ecology, 115, 104851. DOI: https://doi.org/10.1016/j.bse.2024.104851
Perea, R., Dirzo, R., Bieler, S., & Wilson Fernandes, G. (2021). Incidence of galls on sympatric California oaks: ecological and physiological perspectives. Diversity, 13(1), 20. DOI: https://doi.org/10.3390/d13010020
Pierce, M. P. (2019). The ecological and evolutionary importance of nectar‐secreting galls. Ecosphere, 10(4), e02670. DOI: https://doi.org/10.3390/d13010020
Pilichowski, S., & Giertych, M. J. (2020). Two galling insects (Hartigiola annulipes and Mikiola fagi), one host plant (Fagus sylvatica)–differences between leaf and gall chemical composition. Baltic Forestry, 26(2), 474. DOI: https://doi.org/10.46490/BF474
Qi, Y., Duan, C., Ren, L., & Wu, H. (2020). Growth dynamics of galls and chemical defense response of Pinus thunbergii Parl. to the pine needle gall midge, Thecodiplosis japonensis Uchida & Inouye (Diptera: Cecidomyiidae). Scientific Reports, 10(1), 12289. DOI: https://doi.org/10.1038/s41598-020-69231-4
Sadeghi, S. E., Assareh, H. H., & Tavakoli, M. (2009). Oak gall wasps of Iran. Research Institute of Forests and Rangelands Press. 286 pp. (In Farsi) DOI: https://doi.org/10.22092/irn.2024.364786.1567
Schönrogge, K., Harper, L. J., & Lichtenstein, C. P. (2000). The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant, Cell & Environment, 23(2), 215-222. DOI: https://doi.org/10.1046/j.1365-3040.2000.00543.x
Sottile, S., Cerasa, G., Massa, B., & Lo Verde, G. (2022). Andricus cydoniae giraud, 1859 junior synonym of Cynips conifica hartig, 1843, as experimentally demonstrated (Hymenoptera: Cynipidae: Cynipini). Insects, 13(2), 200. DOI: https://doi.org/10.3390/insects13020200
Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. Trends in Ecology & Evolution, 18(10), 512-522. DOI: https://doi.org/10.1016/S0169-5347(03)00247-7
Takeda, S., Hirano, T., Ohshima, I., & Sato, M. H. (2021). Recent progress regarding the molecular aspects of insect gall formation. International Journal of Molecular Sciences, 22(17), 9424. DOI: https://doi.org/10.3390/ijms22179424
Tlak Gajger, I., & Dar, S. A. (2021). Plant allelochemicals as sources of insecticides. Insects, 12(3), 189. DOI: https://doi.org/10.3390/insects12030189
Traoré, M., Kaal, J., & Cortizas, A. M. (2023). Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121893. DOI: https://doi.org/10.1016/j.saa.2022.121893
Ushima, R., Sugimoto, R., Sano, Y., Ogi, H., Ino, R., Hayakawa, H., Shimada, K. & Tsuchida, T. (2024). New gall-forming insect model, Smicronyx madaranus: critical stages for gall formation, phylogeny, and effectiveness of gene functional analysis. Insects, 15(1), 63. DOI: https://doi.org/10.3390/insects15010063
Xiang, Y., Guo, W., Shen, S., Gao, X., & Li, X. (2020). Galling impacts of the gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) on eucalyptus trees vary with plant genotype. International Journal of Tropical Insect Science, 40, 267-275. DOI: https://doi.org/10.1007/s42690-019-00076-9
Zardooei, M., Zamani, A. A., Talebi, A. A., & Salari, H. (2020). The species diversity of oak gall wasps (Hymenoptera: Cynipidae) in Kermanshah province.
Taxonomy and Biosystematics, 12(43), 52-66. (In Farsi)
DOI: https://doi.org/10.22108/tbj.2021.125399.1128