مطالعه ترکیبات شیمیایی گال های تشکیل شده توسط زنبورهای گالزای بلوط (Hym.: Cynipidae) در استان کرمانشاه (مطالعه موردی: شهرستان جوانرود)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

درختان بلوط (Quercus infectoria) یکی از اجزای اصلی جوامع جنگلی غرب ایران هستند و در حفظ آب و خاک این منطقه نقش حیاتی دارند. زنبورهای گال­زای بلوط  (Hymenoptera: Cynipidae) باعث ایجاد گال روی اندام‌های مختلف درختان بلوط می‌شوند. این پژوهش با هدف بررسی غلظت برخی متابولیت­ های گیاهی در بافت‌های مختلف درختان بلوط و برخی از گال­ های برگی تشکیل‌شده توسط زنبورهای گال­زا و تغییرات آن­ها در طول فصل رشد در منطقه جوانرود انجام شد. به این منظور، چهار نوع گال (Neuroterus numismalis Geoffroy, Neuroterus quercusbaccarum L., Cynips divisa Harting و Cynips quercusfolii L.)، برگ‌های حاوی گال و برگ‌های سالم زیر آن­ها به عنوان واحد نمونه­ گیری از جنگل‌های بلوط واقع در شهرستان جوانرود جمع‌آوری شدند. در این بررسی غلظت برخی ترکیبات غذایی و متابولیت‌های ثانویه مانند قندهای محلول و نامحلول، فنل کل، تانن کل و تانن متراکم اندازه­ گیری شدند. نتایج حاصل از تجزیه واریانس داده‌ها نشان داد که غلظت متابولیت ­های مختلف در طول فصل در چهار نوع گال مختلف و دو بافت مورد بررسی با هم تفاوت معنی‌داری داشتند. بالاترین غلظت کربوهیدرات­ ها و نشاسته در هر چهار نوع گال و دو نوع بافت گیاهی در مهرماه به دست آمد. در مقابل بیش­ترین میزان نیتروژن کل و پروتئین خام در شهریورماه حاصل شد. چون بافت گال تنها منبع تغذیه برای حشره‌ گال‌زا محسوب می‌شود، بنابراین، به نظر می­ رسد که کیفیت مواد غذایی آن برای حشره‌ گال‌زا اهمیت زیادی دارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Survey on the chemical compounds of the galls formed by oak gall wasps (Hym.: Cynipidae) in Kermanshah province (case study: Javanroud city)

نویسندگان [English]

  • Masoume Paydar 1
  • Abbas A. Zamani 1
  • Mohsen Saeidi 2
1 Department of Plant Protection, Faculty of Agriculture, Razi University, Kermanshah, Iran
2 Department of Plant Production and Genetic Engineering, Razi University, Kermanshah, Iran
چکیده [English]

Oak trees (Quercus infectoria) are one of the main components of forest communities in western Iran and play a vital role in preserving water and soil in this region. Oak gall wasps (Hymenoptera: Cynipidae) cause gall on different parts of oak trees. This research was conducted to investigate the concentration of some plant metabolites in different tissues of oak trees and some leaf galls formed by gall wasps and their changes during the growing season in the Javanroud region. For this purpose, four types of galls (Neuroterus numismalis Geoffroy, Neuroterus quercusbaccarum L., Cynips divisa Harting, and Cynips quercusfolii L.), leaves containing gall, and healthy leaves were collected as a sampling unit from oak forests in Javanroud city. This study measured the concentration of some food compounds and secondary metabolites, such as soluble and insoluble sugars, total phenol, total tannin, and condensed tannin. The results of the variance analysis of the data showed that the concentration of different metabolites during the season in four different types of gall and the two investigated tissues were significantly different. The results showed that the peak concentration of carbohydrates and starch in all four types of galls and two types of plant tissue occurs in October, while the highest amount of total nitrogen and crude protein is found in September. Because gall tissue is considered the only food source for the gall-producing wasps, the quality of its food seems very important to them.

کلیدواژه‌ها [English]

  • Nitrogen
  • Phenol
  • Protein
  • Sugar
  • Tannin
Abrahamson, W. G., Hunter, M. D., Melika, G., & Price, P. W. (2003). Cynipid gall-wasp communities correlate with oak chemistry. Journal of Chemical Ecology, 29, 209-223. DOI: https://doi.org/10.1023/A:1021993017237
Allison, S. D., & Schultz, J. C. (2005). Biochemical responses of chestnut oak to a galling cynipid. Journal of Chemical Ecology, 31, 151-166. DOI: https://doi.org/10.1007/s10886-005-0981-5
AOAC. (1995). Official methods of analysis 16th Ed. Association of official analytical chemists. Washington DC, USA.
Bellows, E., Heatley, M., Shah, N., Archer, N., Giles, T., & Fray, R. (2024). Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. Plant Biology, 26(5),798-810. DOI: https://doi.org/10.1111/plb.13670
Ben-Shlomo, R., Talal, S., & Inbar, M. (2022). The dynamics and the timeline of speciation in the gall-forming aphid Geoica spp. within and among pistacia host tree species. Molecular Phylogenetics and Evolution, 174, 107549. DOI: https://doi.org/10.1016/j.ympev.2022.107549
Castro, A., Oliveira, D., Moreira, A., Lemos-Filho, J., & Isaias, R. (2012). Source–sink relationship and photosynthesis in the horn-shaped gall and its host plant Copaifera langsdorffii Desf. (Fabaceae). South African Journal of Botany, 83, 121-126. DOI: https://doi.org/10.1016/j.sajb.2012.08.007
Chen, J. (2024). It's gall relative: metabolic profiling of two morphologically distinct oak leaf galls induced by cynipid wasps. Plant Physiology, 195(1), 248-250. DOI: https://doi.org/10.1093/plphys/kiae032
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., King-Jones, K., & Chen, S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Chen, X., Yang, Z., Chen, H., Qi, Q., Liu, J., Wang, C., Shao, S., Lu, Q., Li, Y., Wu, H., & Chen, M. S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. DOI: https://doi.org/10.3389/fpls.2020.00811
Costa-Rezende, U., Fernandes-Cardoso, J. C., Hanson, P., & Oliveira, D. C. (2021). Gall traits and galling insect survival in a multi-enemy context. Revista de Biología Tropical, 69(1), 291-301. DOI: https://doi.org/10.15517/rbt.v69i1.42826
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. DOI: https://doi.org/10.3390/ijms23052690
Elhamouly, N. A., Hewedy, O. A., Zaitoon, A., Miraples, A., Elshorbagy, O. T., Hussien, S., El-Tahan, A., & Peng, D. (2022). The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Frontiers in Plant Science, 13, 1044896. DOI: https://doi.org/10.3389/fpls.2022.1044896
Gätjens-Boniche, O. (2019). The mechanism of plant gall induction by insects: revealing clues, facts, and consequences in a cross-kingdom complex interaction. Revista de Biología Tropical, 67(6), 1359-1382. DOI: https://doi.org/10.15517/rbt.v67i6.33984
Harris, M. O., & Pitzschke, A. (2020). Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 225(5), 1852-1872. DOI: https://doi.org/10.1111/nph.16340
Hearn, J., Blaxter, M., Schönrogge, K., Nieves-Aldrey, J. L., Pujade-Villar, J., Huguet, E., Drezen, J. M., Shorthouse, J. D., & Stone, G. N. (2019). Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genetics, 15(11), e1008398. DOI: https://doi.org/10.1371/journal.pgen.1008398
Hoffmann, F., Allers, K., Rombey, T., Helbach, J., Hoffmann, A., Mathes, T., & Pieper, D. (2021). Nearly 80 systematic reviews were published each day: observational study on trends in epidemiology and reporting over the years 2000-2019. Journal of Clinical Epidemiology, 138, 1-11. DOI: https://doi.org/10.1016/j.jclinepi.2021.05.022
Huang, M. Y., Huang, W. D., Chou, H. M., Chen, C. C., Chen, P. J., Chang, Y. T., & Yang, C. M. (2015). Structural, biochemical, and physiological characterization of photosynthesis in leaf-derived cup-shaped galls on Litsea acuminataBMC Plant Biology, 15, 1-12. DOI: https://doi.org/10.1186/s12870-015-0446-0
Ikai, N., & Hijii, N. (2007). Manipulation of tannins in oaks by galling cynipids. Journal of Forest Research, 12, 316-319. DOI: https://doi.org/10.1007/s10310-007-0016-x
Kanjana, N., Li, Y., Shen, Z., Mao, J., & Zhang, L. (2024). Effect of phenolics on soil microbe distribution, plant growth, and gall formation. Science of the Total Environment, 924, 171329. DOI: https://doi.org/10.1016/j.scitotenv.2024.171329
Leach, C. K. (1986). The phenolic contents of some British cynipid galls. Cecidology, 1, 10-2. DOI: https://doi.org/10.1007/978-94-017-0273-7
Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 324791. DOI: https://doi.org/10.3389/fevo.2018.00064
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents.‏ In: Portland Press Ltd.
Lombardero, M. J., & Ayres, M. P. (2022). Defensive patterns of chestnut genotypes (Castanea spp.) against the gall wasp, Dryocosmus kuriphilus. Frontiers in Forests and Global Change, 5, 1046606. DOI: https://doi.org/10.3389/ffgc.2022.1046606
Makkar, H. P. (2003). Quantification of tannins in tree and shrub foliage: A laboratory manual. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-017-0273-7
Markel, K., Novak, V., Bowen, B. P., Tian, Y., Chen, Y. C., Sirirungruang, S., Zhou, A., Louie, K. B., Northen, T. R., Eudes, A., & Shih, P. M. (2024). Cynipid wasps systematically reprogram host metabolism and restructure cell walls in developing galls. Plant Physiology, 195(1), 698-712. DOI: https://doi.org/10.1093/plphys/kiae001
Martini, V., Moreira, A. S. F. P., Kuster, V. C., & Oliveira, D. C. (2020). Photochemical performance and source-sink relationships in galls induced by Pseudophacopteron longicaudatum (Hemiptera) on leaves of Aspidosperma tomentosum (Apocynaceae). Photosynthetica, 58(3), 827-835. DOI: https://doi.org/10.32615/ps.2020.033
Meyer-Rochow, V. B. (2022). Can molecularly engineered plant galls help to ease the problem of world food shortage (and our dependence on pollinating insects)?. Foods, 11(24), 4014. DOI: https://doi.org/10.3390/foods11244014
Miller III, D. G., & Raman, A. (2019). Host–plant relations of gall-inducing insects. Annals of the Entomological Society of America, 112(1), 1-19. DOI: https://doi.org/10.1093/aesa/say034
Motta, S., Guaita, M., Cassino, C., & Bosso, A. (2020). Relationship between polyphenolic content, antioxidant properties and oxygen consumption rate of different tannins in a model wine solution. Food Chemistry, 313, 126045. DOI: https://doi.org/10.1016/j.foodchem.2019.126045
Murakami, R., Ushima, R., Sugimoto, R., Tamaoki, D., Karahara, I., Hanba, Y., Wakasugi, T., & Tsuchida, T. (2021). A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant. Scientific Reports, 11(1), 13013. DOI: https://doi.org/10.1038/s41598-021-92417-3
Nyman, T., & Julkunen-Tiitto, R. (2000). Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proceedings of the National Academy of Sciences, 97(24), 13184-13187. DOI: https://doi.org/10.1073/pnas.230294097
Pandey, K., & Kate, A. S. (2024). Comparative analysis of foliar galls and ungalled leaves of Alstonia scholaris with a focus on tissue ultrastructure and phytochemistry. Biochemical Systematics and Ecology, 115, 104851. DOI: https://doi.org/10.1016/j.bse.2024.104851
Perea, R., Dirzo, R., Bieler, S., & Wilson Fernandes, G. (2021). Incidence of galls on sympatric California oaks: ecological and physiological perspectives. Diversity, 13(1), 20. DOI: https://doi.org/10.3390/d13010020
Pierce, M. P. (2019). The ecological and evolutionary importance of nectar‐secreting galls. Ecosphere, 10(4), e02670. DOI: https://doi.org/10.3390/d13010020
Pilichowski, S., & Giertych, M. J. (2020). Two galling insects (Hartigiola annulipes and Mikiola fagi), one host plant (Fagus sylvatica)–differences between leaf and gall chemical composition. Baltic Forestry, 26(2), 474. DOI: https://doi.org/10.46490/BF474
Qi, Y., Duan, C., Ren, L., & Wu, H. (2020). Growth dynamics of galls and chemical defense response of Pinus thunbergii Parl. to the pine needle gall midge, Thecodiplosis japonensis Uchida & Inouye (Diptera: Cecidomyiidae). Scientific Reports, 10(1), 12289. DOI: https://doi.org/10.1038/s41598-020-69231-4
Sadeghi, S. E., Assareh, H. H., & Tavakoli, M. (2009). Oak gall wasps of Iran. Research Institute of Forests and Rangelands Press. 286 pp. (In Farsi) DOI: https://doi.org/10.22092/irn.2024.364786.1567
Schönrogge, K., Harper, L. J., & Lichtenstein, C. P. (2000). The protein content of tissues in cynipid galls (Hymenoptera: Cynipidae): similarities between cynipid galls and seeds. Plant, Cell & Environment, 23(2), 215-222. DOI: https://doi.org/10.1046/j.1365-3040.2000.00543.x
Sottile, S., Cerasa, G., Massa, B., & Lo Verde, G. (2022). Andricus cydoniae giraud, 1859 junior synonym of Cynips conifica hartig, 1843, as experimentally demonstrated (Hymenoptera: Cynipidae: Cynipini). Insects, 13(2), 200. DOI: https://doi.org/10.3390/insects13020200
Stone, G. N., & Schönrogge, K. (2003). The adaptive significance of insect gall morphology. Trends in Ecology & Evolution, 18(10), 512-522. DOI: https://doi.org/10.1016/S0169-5347(03)00247-7
Takeda, S., Hirano, T., Ohshima, I., & Sato, M. H. (2021). Recent progress regarding the molecular aspects of insect gall formation. International Journal of Molecular Sciences, 22(17), 9424. DOI: https://doi.org/10.3390/ijms22179424
Tlak Gajger, I., & Dar, S. A. (2021). Plant allelochemicals as sources of insecticides. Insects, 12(3), 189. DOI: https://doi.org/10.3390/insects12030189
Traoré, M., Kaal, J., & Cortizas, A. M. (2023). Variation of wood color and chemical composition in the stem cross-section of oak (Quercus spp.) trees, with special attention to the sapwood-heartwood transition zone. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 285, 121893. DOI: https://doi.org/10.1016/j.saa.2022.121893
Ushima, R., Sugimoto, R., Sano, Y., Ogi, H., Ino, R., Hayakawa, H., Shimada, K. & Tsuchida, T. (2024). New gall-forming insect model, Smicronyx madaranus: critical stages for gall formation, phylogeny, and effectiveness of gene functional analysis. Insects, 15(1), 63. DOI: https://doi.org/10.3390/insects15010063
Xiang, Y., Guo, W., Shen, S., Gao, X., & Li, X. (2020). Galling impacts of the gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) on eucalyptus trees vary with plant genotype. International Journal of Tropical Insect Science, 40, 267-275. DOI: https://doi.org/10.1007/s42690-019-00076-9
Zardooei, M., Zamani, A. A., Talebi, A. A., & Salari, H. (2020). The species diversity of oak gall wasps (Hymenoptera: Cynipidae) in Kermanshah province. Taxonomy and Biosystematics, 12(43), 52-66. (In Farsi) DOI: https://doi.org/10.22108/tbj.2021.125399.1128