تاثیر ترکیبات حفاظتی از اشعه ماوراء‌بنفش در بیماری‌زایی باکتری Bacillus thuringiensis علیه برگ‌خوار چغندرقند Spodoptera exigua در شرایط آزمایشگاهی و صحرایی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاهپزشکی، دانشکده کشاورزی دانشگاه ارومیه، ارومیه، ایران

چکیده

باکتری Bacillus thuringiensis به ­عنوان یک آفت­ کش بیولوژیک در کنترل جمعیت بعضی از آفات نقش موثری دارد. با این وجود تابش ماوراء­بنفش خورشیدی یکی از عوامل تخریب اسپور و کریستال این باکتری است. بنابراین تحقیق روی ترکیبات حفاظتی در برابر تابش ماوراء­بنفش ضروری می­ باشد. در این تحقیق، اثر زغال فعال، گرافن اکسید و نانو­گرافن اکسید در حفظ بیماری­زایی باکتری Btk در برابر اشعه ماوراء­بنفش روی آفت برگ‌خوار چغندرقند (کارادرینا) Spodoptera exigua (Hübner) در شرایط آزمایشگاهی و صحرایی مورد بررسی قرار گرفت. تجزیه پروبیت تاثیر غلظت­ های باکتری Btk روی لارو­های سن دوم آفت بعد از 48 و 72 ساعت در شرایط آزمایشگاهی نشان داد غلظت کشنده 50 درصد به ­ترتیب 1149/62و 729/13 پی‌پی‌ام می­ باشد. نتایج بررسی تاثیر اشعه ماوراء‌بنفش روی بیماری‌زایی باکتری Btk نشان داد که باکتری در معرض این اشعه نسبت به باکتری بدون پرتو‌دهی، روی لارو‌های سن دوم کشندگی کمتری دارد. تجزیه واریانس حاصل از تاثیر اشعه ماوراء­بنفش روی جوانه­زنی اسپور باکتری همراه با مواد حفاظتی در مقایسه با شاهد نشان داد که زغال فعال دارای عملکرد موثرتری می­ باشد. همچنین تجزیه واریانس خاصیت حفاظت­کنندگی تیمار­ها از اشعه ماوراء­بنفش روی اثر­بخشی باکتری Btk علیه سن دوم لاروی آفت در شرایط آزمایشگاهی و صحرایی نشان داد تیمار زغال فعال اثر حفاظتی بیشتری نسبت به سایر تیمار­ها دارد. با توجه به نتایج، زغال فعال در استفاده هم‌زمان با باکتری Btk ­علیه این آفت توصیه می ­شود. زغال فعال را می ­توان در تهیه فرمولاسیون ­های این آفت­ کش به‌منظور حفاظت از آن در برابر اشعه ماوراء­بنفش خورشید پیشنهاد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of protective compounds from ultraviolet rays in pathogenicity of Bacillus thuringiensis against Spodoptera exigua in laboratory and field conditions

نویسندگان [English]

  • Mahdieh Mousavi
  • shahram aramideh
  • Samaneh Akbari
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

Bacillus thuringiensis serves as an effective biopesticide in controlling specific pests. Nonetheless, exposure to solar ultraviolet (UV) radiation is a significant factor that contributes to the degradation of the spores and crystals of this bacterium. Therefore, research on protective compounds against UV radiation is essential. In this study, the effects of activated charcoal, graphene oxide, and nanographene oxide in preserving the pathogenicity of B. thuringiensis var. kurstaki (Btk) against ultraviolet radiation on the beet armyworm, Spodoptera exigua (Hübner) were investigated under laboratory and field conditions. The probit analysis of concentrations of Btk on second-instar larvae of the S. exigua after 48 and 72 hours in the laboratory showed that LC50 was 1149.62 and 729.13 ppm, respectively. Additionally, the study examining the impact of UVC on the pathogenicity of Btk indicated that larvae exposed to UVC-treated Btk experienced lower mortality rates compared to those exposed to the non-irradiated bacterium. The variance analysis regarding the impact of UV radiation on spore germination, when using protective agents in comparison to the control group, demonstrated that activated charcoal showed the more effective results. Additionally, an analysis of variance regarding the UV-protective properties of the treatments in preserving the effectiveness of Btk against second-instar larvae conducted under both laboratory and field conditions revealed that activated charcoal had a higher protective effect compared to other treatments. Based on the results, activated charcoal is recommended for use with Btk against this pest. Activated charcoal can be suggested for inclusion in formulations of this biopesticide to protect it from solar UV radiation

کلیدواژه‌ها [English]

  • Biopesticide
  • biological control
  • Caradrina
  • protective compounds
  • solar radiation
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Abdollahzadeh Bavani, M., Aramideh, Sh., & Hosseinzadeh, A. (2019). Effect of Bacillus thuringiensis, SeNPV, Spinosad and Emamectin on third larval instar of Spodoptera exigua (Lep.: Noctuidae) in laboratory and field conditions. Plant Pest Research, 9(1), 1-12. DOI: https://doi.org/ 10.22124/ iprj.1970.3427
Alkassab, A. T., Beims, H., Janke, M., & Pistorius, J. (2022). Determination, distribution, and environmental fate of Bacillus thuringiensis spores in various honeybee matrices after field Page 10/20 application as plant protection product. Environmental Science and Pollution Research, 29(17), 25995–26001. DOI: https://doi.org/10.1007/s11356-022-19414-5
Aramideh, Sh. (2016). Effect of active charcoal and starch on enhancement pathogenicity of Bacillus thuringiensis var. kurstaki against second instars larvae of ash tree pest Nyssia graecarius Staudinger (Lep.: Geometridae). Forest Research and Development, 2(2), 145-154.
Aramideh, Sh., Safaralizadeh, M. H., Pourmirza, A. A., & Parvizi, R. (2005). Studies on the susceptibility of different larval, prepupa, and pupa stages of beet armyworm (Spodoptera exigua H.) to Steinernema carpocapsae on sugar beet under laboratory conditions. Journal of Agricultural Science and Nature Resource, 12(5), 159-166.
Behle, R., Compton, D., Kenar, J., & Shapiro-Ilan, D. (2010). Improving formulations for biopesticides: enhanced UV protection for beneficial microbes. Journal of ASTM International, 8(1), 1-15.‏ DOI: https://doi.org/10.1520/JAI102793
Bolibok, P., Roszek, K., & Wiśniewski, M. (2018). Graphene oxide-mediated protection from Photodamage. The Journal of Physical Chemistry Letters9(12), 3241-3244. DOI: https://doi.org/10.1021/acs.jpclett.8b01349
Brar, S. K., Verma, M., Tyagi, R., & Valéro, J. (2006). Recent advances in downstream processing and formulations of Bacillus thuringiensis-based biopesticides. Process Biochemistry, 41, 323–342. DOI: https://doi.org/10.1016/j.procbio.2005.07.015
Çakmak, T., Simón, O., Kaydan, M. B., Tange, D. A., González Rodríguez, A. M., Piedra-Buena Diaz, A., & Hernandez Suarez, E. (2021). Effects of several UV-protective substances on the persistence of the insecticidal activity of the Alphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) on banana (Musa acuminata, Musaceae, Colla) under laboratory and open-field conditions. Plos One, 16(5), e0250217. DOI: https://doi.org/10.1371/journal.pone.0250217
Che, W. N., Shi, T., Wu, Y. D., & Yang, Y. H. (2013). Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 106, 1855-1862. DOI: https://doi.org/10.1603/EC13128
Da-Yong, J., & Yong-Man, Y. (2010). Isolated and bioassay of Bacillus thuringiensis with high insecticidal activity to Spodoptera exigua. Journal of Agricultural Science Yanbian University, 32(4), 238–242.
De Oliveira, J. L., Gómez, I., Sánchez, J., Soberón, M., Polanczyk, R. A., & Bravo, A. (2022). Performance of microencapsulated Bacillus thuringiensis Cry pesticidal proteins. Research Square, 1-21. DOI: https://doi.org/10.21203/rs.3.rs-1949207/v1
Eliane, C. P., Letícia, M., Gonçalves, M., Auxiliadora, M. G., Claudete, A. M., & Maria, F. (2012). Activated charcoal and graphite for the micropropagation of Cattleya bicolor Lindl. and a orchid double-hybrid ‘BLC Pastoral Innocence. Maringá, 34(2), 157-161. DOI: https://doi.org/10.4025/actasciagron.v34i2.12257
Federici, B. (2022). A primer on the extraordinary efficacy and safety of bacterial insecticides based on Bacillus Thuringiensis. Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture, 14, 476–487. DOI: https://doi.org/10.1002/9781119762621.ch38.
Fu, X. W., Feng, H. Q., Liu, Z. F., & Wu, K. M. (2017). Trans-regional migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), in North-East Asia. PLoS ONE, 12, 183582. DOI: https://doi.org/10.1371/journal.pone.0183582
Hadapad, A. B., Hire, R. S., Vijayalakshmi, N., & Dongre, T. K. (2009). UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Journal of Invertebrate Pathology100(3), 147-152.‏ DOI: https://doi.org/10.1016/j.jip.2008.12.003
Hafeez, M., Ullah, F., Khan, M. M., Li, X., Zhang, Z., Shah, S., Imran, M., Assiri, M. A., Fernández-Grandon, G. M., Desneux, N., Rehman, M., Fahad, S., & Lu, Y. (2022). Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environmental Science and Pollution Research International, 29, 1746–1762. DOI: https://doi.org/10.1007/s11356-021-16974-w
Helassa, N., Quiquampoix, H., Noinville, S., Szponarski, W., & Staunton, S. (2009). Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) Cry1Aa toxin on montmorillonite and kaolinite. Soil Biology and Biochemistry41(3), 498-504. DOI: https://doi.org/10.1016/j.soilbio.2008.12.008
Hong, B. J., An, Z., Compton, O. C., & Nguyen, S. T. (2012). Tunable biomolecular interaction and fluorescence‎ quenching‎ ability‎ of‎ graphene‎ oxide:‎ Application‎ to‎ “Turn‐on” DNA sensing in biological media. Small, 8(16), 2469-2476. DOI: https://doi.org/10.1002/smll.201200264
Hosseini, E., Aramideh, Sh., & Mirfakhraie, Sh. (2022). Efficiency of diatomaceous earth, silica nanoparticles, kaolin, micronized sulfur and their mixing on Tetranychus urticae Koch. in greenhouse conditions. Plant Pest Research, 12(1), 43-58. DOI: https://doi.org/10.22124/iprj.2022.5607
Jalali, A., Maghsoudi, Sh., & Marzban, R. (2018). Study effect of graphene oxide nanosheets on Bacillus thuringiensis biopestiside performance. Biological Control of Pests and Plant Diseases, 7(1), 85-92. (in Farsi)
Jalali, E., & Maghsoudi, S. (2024). Enhancing UV radiation protection of Bacillus thuringiensis formulations using sulfur quantum dots: synthesis and efficacy evaluation. Scientific Reports, 14(1), 17384. DOI: https://doi.org/10.1038/s41598-024-68595-1
Jalali, E., Maghsoudi, S., & Noroozian, E. (2020a). A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Scientific Reports, 10(1), 426. DOI: https://doi.org/10.1038/s41598-019-57407-6
Jalali, E., Maghsoudi, S., & Noroozian, E. (2020b). Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method. Scientific Reports, 10(1), 1–10. DOI: https://doi.org/10.1038/s41598-020-77721-8
Jallouli, W., Sellami, S., Sellami, M., & Tounsi, S. (2014). Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Acta Tropica, 140, 19–25. DOI: https://doi.org/10.1016/j.actatropica.2014.07.016
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., & Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. DOI: https://doi.org/10.3390/microorganisms10030596
Maghsoudi, S., & Jalali, E. (2017). Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Scientific Reports, 7(1), 11019. DOI: https://doi.org/10.1038/s41598-017-11080-9
Moraes, L., Faria, R. T., & Cuquel, F. L. (2005). Activated charcoal for in vitro propagation of Brazilian orchids. Acta Horticulturae, 683(3), 383-389. DOI: https://doi.org/10.17660/ActaHortic.2005.683.50
Mounsef, J. R., Salameh, D., kallassy Awad, M., Chamy, L., Brandam, C., & Lteif, R. (2014). A simple method for the separation of Bacillus thuringiensis spores and crystals. Journal of Microbiological Methods107, 147-149. DOI: https://doi.org/10.1016/j.mimet.2014.10.003
Moustafa, M. A., Saleh, M. A., Ateya, I. R., & Kandil, M. A. (2018). Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations against the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 28, 1-7. DOI: https://doi.org/10.1186/s41938-018-0064-x
Moxtarnejad, E., Safaralizade, M. H., & Aramideh, S. (2014). The protective material effect in combination with Bacillus thuringiensis var. kurstaki (Btk) against UV for control Pieris brassicae L. (Lep.: Pieridae). Archives of Phytopathology and Plant Protection, 47(20), 2414-2420. DOI: https://doi.org/10.1080/03235408.2014.880558
Muchaonyerwa, P., Chevallier, T., Pantani, O. L., Nyamugafata, P., Mpepereki, S., & Chenu, C. (2006). Adsorption of the pesticidal toxin from Bacillus thuringiensis subsp. tenebrionis on tropical soils and their particle-size fractions. Geoderma133(3-4), 244-257. DOI: https://doi.org/10.1016/j.geoderma.2005.07.011
Ortiz, A., & Sansinenea, E. (2023). Microbial-based biopesticides: commercialization and regulatory perspectives. Elsevier. pp. 103–118. DOI: https://doi.org/10.1016/B978-0-323-95290-3.00020-0
Pan, X., Xu, Z., Li, L., Shao, E., Chen, S., Huang, T., Chen, Z., Rao, W., Huang, T., Zhang, L., & Wu, S. (2017). Adsorption of insecticidal crystal protein Cry11Aa onto nano-Mg (OH)2: Effects on bioactivity and anti-ultraviolet ability. Journal of Agricultural and Food Chemistry, 65, 9428-9434. DOI: https://doi.org/10.1021/acs.jafc.7b03410
Pourmirza, A. A. (2005). Local variation in susceptibility of Colorado potato beetle (Col.: Chrysomelidae) to insecticide. Journal of Economic Entomology, 98, 2176-80. DOI: https://doi.org/10.1093/jee/98.6.2176
Proo, B., Aramideh, Sh., Mirfakhraie, Sh., & Hosseinzadeh, A. (2023). An investigation on the effect of ultraviolet rays and parasitoid wasp, Trichogramma brassicae in controlling the egg stage of potato tuber moth, Phthorimaea operculella. Plant Pest Research, 12(4), 37-49. DOI; https://doi.org/10.22124/iprj.2023.23127.1500
Pusztai, M., Fast, P., Gringorten, L., Kaplan, H., Lessard, T., & Carey, P. R. (1991). The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochemical Journal273(1), 43-47.‏ DOI: https://doi.org/10.1042/bj2730043
Ruan, L., Yu, Z., Fang, B., He, W., Wang, Y., & Shen, P. (2004). Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Systematic and Applied Microbiology27(3), 286-289.‏ DOI: https://doi.org/10.1078/0723-2020-00265
Sansinenea, E., & Ortiz, A. (2015). Melanin: a photoprotection for Bacillus thuringiensis-based biopesticides. Biotechnology Letters, 37, 483-490.
Sansinenea, E., Salazar, F., Ramirez, M., & Ortiz, A. (2015). An Ultra-Violet Tolerant Wild-Type Strain of Melanin-Producing Bacillus thuringiensis. Jundishapur Journal of Microbiology, 8(7), 1-6. DOI: https://doi.org/10.5812/jjm.20910v2
Sarlak, N., Taherifar, A., & Salehi, F. (2014). Synthesis of nano-pesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. Journal of Agriculture and Food Chemistry, 62, 4833–4838. DOI:https://doi.org/10.1021/jf404720d
Saroja Kalmath, B., Bheemanna, M., & Prabhuraj, A. (2018). Evaluation of UV protectants for wettable powder formulation of native Bacillus thuringiensis (Berliner) isolates against Helicoverpa armigera (Hubner) in the laboratory. Informatics Journal, 32(3), 179-186. DOI:https://doi.org/10.18311/jbc/ 2018/21661
Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z. E., Boussiba, S., & Zaritsky, A. (2002). A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Current Microbiology44, 25-30.‏
Saxena, D., Pushalkar, S., & Stotzky, G. (2010). Fate and effects in soil of Cry proteins from Bacillus thuringiensis: Influence of physicochemical and biological characteristics of soil. The Open Toxinology Journal3(1), 151-171.
Shargi, H., Eivazian Kary, N., & Mohammadi, D. (2021). Compatibility of Steinernema carpocapsae and Steinernema feltiae with cypermethrin against the beet armyworm Spodoptera exigua. Journal of Applied Research in Plant Protection, 10(3), 1–14. DOI: https://doi.org/10.22034/arpp.2021.13315
Si, S. Y., Zhou, L. L., Wang, S. L., Jiang, X. F., Xu, Z. F., Mu, W., Wang, D. S., Wang, X. P., Chen, H. T., Yang, Y. H., & Ji, X. C. (2012). Progress in research on prevention and control of beet armyworm, Spodoptera exigua in China. Chinese Journal of Applied Entomology, 49, 1432-1438.
Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48, 2127-2159. DOI: https://doi.org/10.1016/j.carbon.2010.01.058
Sukirno, S., Sumarmi, S., Soesilohadi, R. H., Sudaryadi, I., Purwanto, H., & Aldawood, A. S. (2023). The effects of ultraviolet B on the efficacy of Bacillus thuringiensis var. kurstaki formulations against tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). HAYATI Journal of Biosciences, 30(1), 17-27.
Suresh Kumar, R. S., Shiny, P. J., Anjali, C. H., Jerobin, J., Goshen, K. M., Magdassi, S., Mukherjee, A., & Chandrasekaran, N. (2013). Distinctive effects of nano-sized permethrin in the environment. Environmental Science and Pollution Research20, 2593-2602.
Tamez-Guerra, P., McGuire, M. R., Behle, R. W., Shasha, B. S., & Galn Wong, L. J. (2000). Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensisJournal of Economic Entomology93(2), 219-225. DOI: https://doi.org/10.1603/0022 0493-93.2.219
van Bokhorst-van de Veen, H., Xie, H., Esveld, E., Abee, T., Mastwijk, H., & Groot, M. N. (2015). Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen-cold atmospheric plasma evokes distinct changes in the morphology and integrity of spores. Food Microbiology, 45, 26-33. DOI: https://doi.org/10.1016/j.fm.2014.03.018
Vilas-Boas, G. T., Peruca, A. P. S., & Arantes, O. M. N. (2007). Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian Journal of Microbiology, 53, 673–687. DOI: https://doi.org/10.1139/W07-029
Wang, S., Ang, P. K., Wang, Z., Tang, A. L., Thong, J. T., & Loh, K. P. (2010). High mobility, printable, and solution processed graphene electronics. Nano Letters, 10, 92-98. DOI: https://doi.org/10.1021/nl9028736
Zhang, J. T., Yan, J. P., Zheng, D. S., Sun, Y. J., & Yuan, Z. M. (2008). Expression of mel gene improves the UV resistance of Bacillus thuringiensis. Journal of Applied Microbiology, 105, 151–157. DOI: https://doi.org/10.1111/j.1365-2672.2008.03729.x
Zhang, L., Zhang, X., Zhang, Y., Wu, S., Gelbič, I., Xu, L., & Guan, X. (2016). A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Scientific Reports6(1), 39425. DOI: https://doi.org/10.1038/srep39425
Zhang, T., Zhu, G. Y., Yu, C. H., Xie, Y., Xia, M. Y., Lu, B. Y., Fei, X., & Peng, Q. (2019). The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Microchimica Acta186, 1-7.
Zhou, X., Huang, Q., Chen, S., & Yu, Z. (2005). Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil. Applied Clay Science, 30, 87–93. DOI: https://doi.org/10.1016/j.clay.2005.04.003
Zhou, X., Li, H., Liu, Y., Hao, J., Liu, H., & Lu, X. (2018). Improvement of stability of insecticidal proteins from Bacillus thuringiensis against UV-irradiation by adsorption on sepiolite. Adsorption Science & Technology, 36(5-6), 1233-1245. DOI: https://doi.org/10.1177/0263617418759777
Zhu, H., Zhang, Y., Zhang, L., Yu, T., Zhang, K., Jiang, H., Wu, L., & Wang, S. (2014). Highly photostable and biocompatible graphene oxides with amino acid functionalities. Journal of Materials Chemistry C, 2(34), 7126-32. DOI: https://doi.org/10.1039/C4TC00589A
Zogo, B., Tchiekoi, B. N. C., Koffi, A. A., Dahounto, A., Alou, L. P. A., Dabiré, R. K., Baba-Moussa, L., Moiroux, N., & Pennetier, C. (2019). Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malaria Journal, 18, 1-9. DOI: https://doi.org/10.1186/s12936-019-2687-0