Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Abdollahzadeh Bavani, M., Aramideh, Sh., & Hosseinzadeh, A. (2019). Effect of
Bacillus thuringiensis,
SeNPV, Spinosad and Emamectin on third larval instar of
Spodoptera exigua (Lep.: Noctuidae) in laboratory and field conditions.
Plant Pest Research,
9(1), 1-12.
DOI: https://doi.org/ 10.22124/ iprj.1970.3427
Alkassab, A. T., Beims, H., Janke, M., & Pistorius, J. (2022). Determination, distribution, and environmental fate of Bacillus thuringiensis spores in various honeybee matrices after field Page 10/20 application as plant protection product. Environmental Science and Pollution Research, 29(17), 25995–26001. DOI: https://doi.org/10.1007/s11356-022-19414-5
Aramideh, Sh. (2016). Effect of active charcoal and starch on enhancement pathogenicity of Bacillus thuringiensis var. kurstaki against second instars larvae of ash tree pest Nyssia graecarius Staudinger (Lep.: Geometridae). Forest Research and Development, 2(2), 145-154.
Aramideh, Sh., Safaralizadeh, M. H., Pourmirza, A. A., & Parvizi, R. (2005). Studies on the susceptibility of different larval, prepupa, and pupa stages of beet armyworm (Spodoptera exigua H.) to Steinernema carpocapsae on sugar beet under laboratory conditions. Journal of Agricultural Science and Nature Resource, 12(5), 159-166.
Behle, R., Compton, D., Kenar, J., & Shapiro-Ilan, D. (2010). Improving formulations for biopesticides: enhanced UV protection for beneficial microbes. Journal of ASTM International, 8(1), 1-15. DOI: https://doi.org/10.1520/JAI102793
Bolibok, P., Roszek, K., & Wiśniewski, M. (2018). Graphene oxide-mediated protection from Photodamage. The Journal of Physical Chemistry Letters, 9(12), 3241-3244. DOI: https://doi.org/10.1021/acs.jpclett.8b01349
Brar, S. K., Verma, M., Tyagi, R., & Valéro, J. (2006). Recent advances in downstream processing and formulations of Bacillus thuringiensis-based biopesticides. Process Biochemistry, 41, 323–342. DOI: https://doi.org/10.1016/j.procbio.2005.07.015
Çakmak, T., Simón, O., Kaydan, M. B., Tange, D. A., González Rodríguez, A. M., Piedra-Buena Diaz, A., & Hernandez Suarez, E. (2021). Effects of several UV-protective substances on the persistence of the insecticidal activity of the Alphabaculovirus of Chrysodeixis chalcites (ChchNPV-TF1) on banana (Musa acuminata, Musaceae, Colla) under laboratory and open-field conditions. Plos One, 16(5), e0250217. DOI: https://doi.org/10.1371/journal.pone.0250217
Che, W. N., Shi, T., Wu, Y. D., & Yang, Y. H. (2013). Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 106, 1855-1862. DOI: https://doi.org/10.1603/EC13128
Da-Yong, J., & Yong-Man, Y. (2010). Isolated and bioassay of Bacillus thuringiensis with high insecticidal activity to Spodoptera exigua. Journal of Agricultural Science Yanbian University, 32(4), 238–242.
De Oliveira, J. L., Gómez, I., Sánchez, J., Soberón, M., Polanczyk, R. A., & Bravo, A. (2022). Performance of microencapsulated Bacillus thuringiensis Cry pesticidal proteins. Research Square, 1-21. DOI: https://doi.org/10.21203/rs.3.rs-1949207/v1
Eliane, C. P., Letícia, M., Gonçalves, M., Auxiliadora, M. G., Claudete, A. M., & Maria, F. (2012). Activated charcoal and graphite for the micropropagation of Cattleya bicolor Lindl. and a orchid double-hybrid ‘BLC Pastoral Innocence. Maringá, 34(2), 157-161. DOI: https://doi.org/10.4025/actasciagron.v34i2.12257
Federici, B. (2022). A primer on the extraordinary efficacy and safety of bacterial insecticides based on Bacillus Thuringiensis. Good Microbes in Medicine, Food Production, Biotechnology, Bioremediation, and Agriculture, 14, 476–487. DOI: https://doi.org/10.1002/9781119762621.ch38.
Fu, X. W., Feng, H. Q., Liu, Z. F., & Wu, K. M. (2017). Trans-regional migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), in North-East Asia. PLoS ONE, 12, 183582. DOI: https://doi.org/10.1371/journal.pone.0183582
Hadapad, A. B., Hire, R. S., Vijayalakshmi, N., & Dongre, T. K. (2009). UV protectants for the biopesticide based on Bacillus sphaericus Neide and their role in protecting the binary toxins from UV radiation. Journal of Invertebrate Pathology, 100(3), 147-152. DOI: https://doi.org/10.1016/j.jip.2008.12.003
Hafeez, M., Ullah, F., Khan, M. M., Li, X., Zhang, Z., Shah, S., Imran, M., Assiri, M. A., Fernández-Grandon, G. M., Desneux, N., Rehman, M., Fahad, S., & Lu, Y. (2022). Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environmental Science and Pollution Research International, 29, 1746–1762. DOI: https://doi.org/10.1007/s11356-021-16974-w
Helassa, N., Quiquampoix, H., Noinville, S., Szponarski, W., & Staunton, S. (2009). Adsorption and desorption of monomeric Bt (Bacillus thuringiensis) Cry1Aa toxin on montmorillonite and kaolinite. Soil Biology and Biochemistry, 41(3), 498-504. DOI: https://doi.org/10.1016/j.soilbio.2008.12.008
Hong, B. J., An, Z., Compton, O. C., & Nguyen, S. T. (2012). Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: Application to “Turn‐on” DNA sensing in biological media.
Small,
8(16), 2469-2476.
DOI: https://doi.org/10.1002/smll.201200264
Hosseini, E., Aramideh, Sh., & Mirfakhraie, Sh. (2022). Efficiency of diatomaceous earth, silica nanoparticles, kaolin, micronized sulfur and their mixing on
Tetranychus urticae Koch. in greenhouse conditions.
Plant Pest Research,
12(1), 43-58.
DOI: https://doi.org/10.22124/iprj.2022.5607
Jalali, A., Maghsoudi, Sh., & Marzban, R. (2018). Study effect of graphene oxide nanosheets on Bacillus thuringiensis biopestiside performance. Biological Control of Pests and Plant Diseases, 7(1), 85-92. (in Farsi)
Jalali, E., & Maghsoudi, S. (2024). Enhancing UV radiation protection of Bacillus thuringiensis formulations using sulfur quantum dots: synthesis and efficacy evaluation. Scientific Reports, 14(1), 17384. DOI: https://doi.org/10.1038/s41598-024-68595-1
Jalali, E., Maghsoudi, S., & Noroozian, E. (2020a). A novel method for biosynthesis of different polymorphs of TiO2 nanoparticles as a protector for Bacillus thuringiensis from Ultra Violet. Scientific Reports, 10(1), 426. DOI: https://doi.org/10.1038/s41598-019-57407-6
Jalali, E., Maghsoudi, S., & Noroozian, E. (2020b). Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method. Scientific Reports, 10(1), 1–10. DOI: https://doi.org/10.1038/s41598-020-77721-8
Jallouli, W., Sellami, S., Sellami, M., & Tounsi, S. (2014). Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations. Acta Tropica, 140, 19–25. DOI: https://doi.org/10.1016/j.actatropica.2014.07.016
Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., & Barka, E. A. (2022). Biological control of plant pathogens: A global perspective. Microorganisms, 10(3), 596. DOI: https://doi.org/10.3390/microorganisms10030596
Maghsoudi, S., & Jalali, E. (2017). Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Scientific Reports, 7(1), 11019. DOI: https://doi.org/10.1038/s41598-017-11080-9
Moraes, L., Faria, R. T., & Cuquel, F. L. (2005). Activated charcoal for in vitro propagation of Brazilian orchids. Acta Horticulturae, 683(3), 383-389. DOI: https://doi.org/10.17660/ActaHortic.2005.683.50
Mounsef, J. R., Salameh, D., kallassy Awad, M., Chamy, L., Brandam, C., & Lteif, R. (2014). A simple method for the separation of Bacillus thuringiensis spores and crystals. Journal of Microbiological Methods, 107, 147-149. DOI: https://doi.org/10.1016/j.mimet.2014.10.003
Moustafa, M. A., Saleh, M. A., Ateya, I. R., & Kandil, M. A. (2018). Influence of some environmental conditions on stability and activity of Bacillus thuringiensis formulations against the cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 28, 1-7. DOI: https://doi.org/10.1186/s41938-018-0064-x
Moxtarnejad, E., Safaralizade, M. H., & Aramideh, S. (2014). The protective material effect in combination with Bacillus thuringiensis var. kurstaki (Btk) against UV for control Pieris brassicae L. (Lep.: Pieridae). Archives of Phytopathology and Plant Protection, 47(20), 2414-2420. DOI: https://doi.org/10.1080/03235408.2014.880558
Muchaonyerwa, P., Chevallier, T., Pantani, O. L., Nyamugafata, P., Mpepereki, S., & Chenu, C. (2006). Adsorption of the pesticidal toxin from
Bacillus thuringiensis subsp.
tenebrionis on tropical soils and their particle-size fractions.
Geoderma,
133(3-4), 244-257.
DOI: https://doi.org/10.1016/j.geoderma.2005.07.011
Ortiz, A., & Sansinenea, E. (2023). Microbial-based biopesticides: commercialization and regulatory perspectives. Elsevier. pp. 103–118. DOI: https://doi.org/10.1016/B978-0-323-95290-3.00020-0
Pan, X., Xu, Z., Li, L., Shao, E., Chen, S., Huang, T., Chen, Z., Rao, W., Huang, T., Zhang, L., & Wu, S. (2017). Adsorption of insecticidal crystal protein Cry11Aa onto nano-Mg (OH)2: Effects on bioactivity and anti-ultraviolet ability. Journal of Agricultural and Food Chemistry, 65, 9428-9434. DOI: https://doi.org/10.1021/acs.jafc.7b03410
Pourmirza, A. A. (2005). Local variation in susceptibility of Colorado potato beetle (Col.: Chrysomelidae) to insecticide. Journal of Economic Entomology, 98, 2176-80. DOI: https://doi.org/10.1093/jee/98.6.2176
Proo, B., Aramideh, Sh., Mirfakhraie, Sh., & Hosseinzadeh, A. (2023). An investigation on the effect of ultraviolet rays and parasitoid wasp,
Trichogramma brassicae in controlling the egg stage of potato tuber moth,
Phthorimaea operculella.
Plant Pest Research,
12(4), 37-49.
DOI; https://doi.org/10.22124/iprj.2023.23127.1500
Pusztai, M., Fast, P., Gringorten, L., Kaplan, H., Lessard, T., & Carey, P. R. (1991). The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals. Biochemical Journal, 273(1), 43-47. DOI: https://doi.org/10.1042/bj2730043
Ruan, L., Yu, Z., Fang, B., He, W., Wang, Y., & Shen, P. (2004). Melanin pigment formation and increased UV resistance in Bacillus thuringiensis following high temperature induction. Systematic and Applied Microbiology, 27(3), 286-289. DOI: https://doi.org/10.1078/0723-2020-00265
Sansinenea, E., & Ortiz, A. (2015). Melanin: a photoprotection for Bacillus thuringiensis-based biopesticides. Biotechnology Letters, 37, 483-490.
Sansinenea, E., Salazar, F., Ramirez, M., & Ortiz, A. (2015). An Ultra-Violet Tolerant Wild-Type Strain of Melanin-Producing Bacillus thuringiensis. Jundishapur Journal of Microbiology, 8(7), 1-6. DOI: https://doi.org/10.5812/jjm.20910v2
Sarlak, N., Taherifar, A., & Salehi, F. (2014). Synthesis of nano-pesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment.
Journal of Agriculture and Food Chemistry,
62, 4833–4838.
DOI:https://doi.org/10.1021/jf404720d
Saroja Kalmath, B., Bheemanna, M., & Prabhuraj, A. (2018). Evaluation of UV protectants for wettable powder formulation of native Bacillus thuringiensis (Berliner) isolates against Helicoverpa armigera (Hubner) in the laboratory. Informatics Journal, 32(3), 179-186. DOI:https://doi.org/10.18311/jbc/ 2018/21661
Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z. E., Boussiba, S., & Zaritsky, A. (2002). A UV tolerant mutant of Bacillus thuringiensis subsp. kurstaki producing melanin. Current Microbiology, 44, 25-30.
Saxena, D., Pushalkar, S., & Stotzky, G. (2010). Fate and effects in soil of Cry proteins from Bacillus thuringiensis: Influence of physicochemical and biological characteristics of soil. The Open Toxinology Journal, 3(1), 151-171.
Shargi, H., Eivazian Kary, N., & Mohammadi, D. (2021). Compatibility of
Steinernema carpocapsae and
Steinernema feltiae with cypermethrin against the beet armyworm
Spodoptera exigua.
Journal of Applied Research in Plant Protection,
10(3), 1–14.
DOI: https://doi.org/10.22034/arpp.2021.13315
Si, S. Y., Zhou, L. L., Wang, S. L., Jiang, X. F., Xu, Z. F., Mu, W., Wang, D. S., Wang, X. P., Chen, H. T., Yang, Y. H., & Ji, X. C. (2012). Progress in research on prevention and control of beet armyworm, Spodoptera exigua in China. Chinese Journal of Applied Entomology, 49, 1432-1438.
Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48, 2127-2159. DOI: https://doi.org/10.1016/j.carbon.2010.01.058
Sukirno, S., Sumarmi, S., Soesilohadi, R. H., Sudaryadi, I., Purwanto, H., & Aldawood, A. S. (2023). The effects of ultraviolet B on the efficacy of Bacillus thuringiensis var. kurstaki formulations against tobacco armyworm, Spodoptera litura (Lepidoptera: Noctuidae). HAYATI Journal of Biosciences, 30(1), 17-27.
Suresh Kumar, R. S., Shiny, P. J., Anjali, C. H., Jerobin, J., Goshen, K. M., Magdassi, S., Mukherjee, A., & Chandrasekaran, N. (2013). Distinctive effects of nano-sized permethrin in the environment. Environmental Science and Pollution Research, 20, 2593-2602.
Tamez-Guerra, P., McGuire, M. R., Behle, R. W., Shasha, B. S., & Galn Wong, L. J. (2000). Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. Journal of Economic Entomology, 93(2), 219-225. DOI: https://doi.org/10.1603/0022 0493-93.2.219
van Bokhorst-van de Veen, H., Xie, H., Esveld, E., Abee, T., Mastwijk, H., & Groot, M. N. (2015). Inactivation of chemical and heat-resistant spores of Bacillus and Geobacillus by nitrogen-cold atmospheric plasma evokes distinct changes in the morphology and integrity of spores. Food Microbiology, 45, 26-33. DOI: https://doi.org/10.1016/j.fm.2014.03.018
Vilas-Boas, G. T., Peruca, A. P. S., & Arantes, O. M. N. (2007). Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian Journal of Microbiology, 53, 673–687. DOI: https://doi.org/10.1139/W07-029
Wang, S., Ang, P. K., Wang, Z., Tang, A. L., Thong, J. T., & Loh, K. P. (2010). High mobility, printable, and solution processed graphene electronics. Nano Letters, 10, 92-98. DOI: https://doi.org/10.1021/nl9028736
Zhang, J. T., Yan, J. P., Zheng, D. S., Sun, Y. J., & Yuan, Z. M. (2008). Expression of mel gene improves the UV resistance of Bacillus thuringiensis. Journal of Applied Microbiology, 105, 151–157. DOI: https://doi.org/10.1111/j.1365-2672.2008.03729.x
Zhang, L., Zhang, X., Zhang, Y., Wu, S., Gelbič, I., Xu, L., & Guan, X. (2016). A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies. Scientific Reports, 6(1), 39425. DOI: https://doi.org/10.1038/srep39425
Zhang, T., Zhu, G. Y., Yu, C. H., Xie, Y., Xia, M. Y., Lu, B. Y., Fei, X., & Peng, Q. (2019). The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Microchimica Acta, 186, 1-7.
Zhou, X., Huang, Q., Chen, S., & Yu, Z. (2005). Adsorption of the insecticidal protein of Bacillus thuringiensis on montmorillonite, kaolinite, silica, goethite and Red soil. Applied Clay Science, 30, 87–93. DOI: https://doi.org/10.1016/j.clay.2005.04.003
Zhou, X., Li, H., Liu, Y., Hao, J., Liu, H., & Lu, X. (2018). Improvement of stability of insecticidal proteins from Bacillus thuringiensis against UV-irradiation by adsorption on sepiolite. Adsorption Science & Technology, 36(5-6), 1233-1245. DOI: https://doi.org/10.1177/0263617418759777
Zhu, H., Zhang, Y., Zhang, L., Yu, T., Zhang, K., Jiang, H., Wu, L., & Wang, S. (2014). Highly photostable and biocompatible graphene oxides with amino acid functionalities. Journal of Materials Chemistry C, 2(34), 7126-32. DOI: https://doi.org/10.1039/C4TC00589A
Zogo, B., Tchiekoi, B. N. C., Koffi, A. A., Dahounto, A., Alou, L. P. A., Dabiré, R. K., Baba-Moussa, L., Moiroux, N., & Pennetier, C. (2019). Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malaria Journal, 18, 1-9. DOI: https://doi.org/10.1186/s12936-019-2687-0