تأثیر سه رقم گیاه خیار و دو نوع بستر کشت خاکی و هیدروپونیک روی واکنش تابعی بالتوری سبزChrysoperla carnea نسبت به شته‌ جالیزAphis gossypii

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

در این پژوهش، تأثیر سه رقم گیاه خیار (ویهان، شهاب و سبا) در دو نوع بستر کشت (خاک و هیدروپونیک) به صورت مجزا بر واکنش تابعی لاروهای سن سوم بالتوری سبز، Chrysoperla carnea (Stephens) نسبت به تراکم‌های مختلف (2، 4، 8، 16، 32، 64 و 128) پوره‌های چهار روزه‌ شته‌ جالیز Aphis gossypii Glover بررسی شد. لاروهای شکارگر قبل از آزمایش به مدت 16 ساعت گرسنه نگه داشته شدند. آزمایش به مدت 24 ساعت داخل قفس‌های برگی در دمای 2±25 درجه سلسیوس، رطوبت نسبی 5±65 درصد و دوره نوری 16 ساعت روشنایی و 8 ساعت تاریکی انجام شد. تجزیه رگرسیون لجستیک نشان داد که واکنش تابعی شکارگر نسبت به آفت در تمام تیمارها از نوع دوم بود. نرخ حمله (a) برای لارو سن سوم شکارگر در تیمارهای کشت هیدروپونیک به طور معنی‌داری بیشتر از کشت خاکی بود. زمان دستیابی شکارگر (Th) در تیمارهای مختلف مورد بررسی بین 1310/0 تا 1665/0 ساعت متغیر بود. بیشترین نرخ حمله لاروهای شکارگر در تغذیه از شتهA. gossypii ، در هر دو نوع بستر کشت روی رقم ویهان بود و ارقام شهاب و سبا در رتبه‌های بعدی قرار گرفتند. نتایج نشان داد که نوع بستر کشت و رقم گیاه می­تواند پارامترهای واکنش تابعی لارو سن سوم بالتوری سبز را تحت تاثیر قرار ­دهد. با این حال، درک جزئیات بیشتر از اثرات نوع بستر کشت و رقم گیاه میزبان در برهم­کنش­های گیاه خیار، شته جالیز و بالتوری سبز نیازمند انجام بررسی‌های بیشتری است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of three cucumber cultivars and two types of soil and hydroponic culture substrates on functional response of Chrysoperla carnea to Aphis gossypii

نویسندگان [English]

  • Maryam Elahi 1
  • Mahdi Hassanpour 1
  • Hooshang Rafiee-Dastjerdi 1
  • Seyed Ali Asghar Fathi 1
  • Behrooz Esmaielpour 2
1 Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

In this study, the effect of three cucumber cultivars (Vihan, Shahab, and Saba) and two types of culture substrates (soil and hydroponic) was investigated separately on the functional response of 3rd instar larvae of Chrysoperla carnea (Stephens) to different densities (2, 4, 8, 16, 32, 64, and 128) of 4-day-old nymphs of Aphis gossypii Glover. The 3rd instar larvae of predator were starved for 16 h before the experiment. The experiment was conducted for 24 h in leaf cages at 25±2 ̊C, 65±5 % RH, and 16:8 h (L: D). Logistic regression analyses revealed that the functional response of the C. carnea to A. gossypii in all treatments was type II. The attack rate (a) of 3rd instar larvae of the predator in hydroponic culture treatments was significantly higher than the soil culture. The handling times (Th) of the predator varied from 0.1310 to 0.1665 h on different treatments.  The 3rd instar larvae demonstrated the highest feeding attack rate on A. gossypii when associated with the Vihan cultivar, followed by the Shahab and Saba cultivars across both culture substrates. The results revealed that the culture substrates and plant cultivars can affect the functional response parameters of 3rd larval instar of C. carnea.  Further research is necessary to gain a deeper understanding of how plant culture substrates and cultivars influence the interactions among cucumber, A. gossypii, and C. carnea.

کلیدواژه‌ها [English]

  • Common green lacewing
  • cucumber cultivars
  • culture substrate
  • melon aphid
  • predator-prey interaction‎
Abdel-Hameid, N. F. (2022). Functional response estimations of Chrysoperla carnea to different densities of Aphis craccivora and Gynaikothrips ficorum nymphs. Brazilian Journal of Biology84, e268066. DOI: https://doi.org/10.1590/1519-6984.268066
Ail-Catzim, C. E., Rodríguez-González, R. E., Hernández-Juárez, A., & Chacón-Hernández, J. C. (2019). Functional Response of Chrysoperla carnea (Neuroptera: Chrysopidae) on Myzus persicae Nymphs (Hemiptera: Aphididae). Proceedings of the Entomological Society of Washington, 121(4), 535-543. DOI: https://doi.org/10.4289/0013-8797.121.4.535
Asasi, R., Hassanpour, M., Golizadeh, A., Rafiee Dastjerdi, H., & Ghasemi Kalkhoran, M. (2022). Effect of some cucumber cultivars on biological and population growth parameters of Aphis gossypii (Glover) and functional response of Chrysoperla carnea (Stephens). Journal of Vegetables Sciences6(1), 17-32. DOI: https://doi.org/10.22034/iuvs.2022.547900.1194
Atlihan, R., & Guldal, H. (2009). Prey density dependent feeding activity and life history of Scymnus subvillosus Goeze (Coleoptera: Coccinellidae). Phytoparasitica37, 35-41. DOI:
https://doi.org/10.1007/s12600-008-0011-6
Atlıhan, R., Kaydan, B. O. R. A., & Özgökçe, M. S. (2004). Feeding activity and life history characteristics of the generalist predator, Chrysoperla carnea (Neuroptera: Chrysopidae) at different prey densities. Journal of Pest Science77, 17-21. DOI: https://doi.org/10.1007/s10340-003-0021-6
Benhadi‐Marín, J., Pereira, J. A., Sousa, J. P., & Santos, S. A. (2019). Functional responses of three guilds of spiders: Comparing single and multiprey approaches. Annals of Applied Biology175(2), 202-214. DOI: https://doi.org/10.1111/aab.12530
Chen, Y., Olson, D. M., & Ruberson, J. R. (2010). Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interactions4, 81-94. DOI: https://doi.org/10.1007/s11829-010-9092-5
Dalvand, S., Ansari, N. A., & Mortazavi, M. (2017). Effect of Soilless Substrates on fruit quality of four greenhouse tomato cultivars. Iranian Journal of Horticultural Science and Technology, 17(4), 377-388. (in Farsi).
Fathipour, Y., Karimi, M., Farazmand, A., & Ali, A. T. (2017). Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite. Acarologia58(1), 31-40. DOI: https://doi.org/10.24349/acarologia/20184425
FAO. (2022). World food and agriculture-statistical yearbook 2022. DOI: https://doi.org/ 10.4060/cc2211en 
Fernández-arhex, V., & Corley, J. C. (2003). The functional response of parasitoids and its implications for biological control. Biocontrol Science and Technology13(4), 403-413. DOI: https://doi.org/ 10.1080/ 095831 5031000104523
Flores, J. L., Guevara Acevedo, L. P., Aguirre Uribe, L. A., Chavez, E. C., Babii Zabeh, M. H., & Ochoa Fuentes, Y. M. (2013). Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) on Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) eggs. Southwestern Entomologist38(2), 345-352. DOI: https://doi.org/10.3958/059.038.0217
Ghehsareh, A. M., Khosravan, S., & Shahabi, A. A. (2011). The effect of different nutrient solutions on some growth indices of greenhouse cucumber in soilless culture. Journal of Plant Breeding and Crop Science3(12), 321-326. DOI: https://doi.org/10.5897/JPBCS11.061
Grewal, H. S., Maheshwari, B., & Parks, S. E. (2011). Water and nutrient use efficiency of a low-cost hydroponic greenhouse for a cucumber crop: An Australian case study. Agricultural Water Management, 98(5), 841-846. DOI: https://doi.org/10.1016/j.agwat.2010.12.010
Guzman, L. M., & Srivastava, D. S. (2019). Prey body mass and richness underlie the persistence of a top predator. Proceedings of the Royal Society B286(1902), 20190622. DOI: https://doi.org/ 10.1098/rspb. 2019.0622
Hameed, Y., Rizwan, M., Shahzaib, M., Sarmad, M., Hamid, M. F., Zaka, S. M., & Zakria, M. (2022). Functional Response of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) to Lipaphis erysimi (Kaltenbach) and Diuraphis noxia (Kurdjumov). Pakistan Journal of Zoology55, 1-5. DOI: https://doi.org/10.17582/ journal.pjz/20190705190700
Han, P. (2014). Bottom-up effects of fertilization and irrigation on plant-herbivorous insect-natural enemy tri-trophic interactions in agroecosystems. Ph.D. Thesis. Université Nice Sophia Antipolis.
Hassanpour, M., Mohaghegh, J., Iranipour, S., Nouri‐Ganbalani, G., & Enkegaard, A. (2011). Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) to Helicoverpa armigera (Lepidoptera: Noctuidae): effect of prey and predator stages. Insect Science18(2), 217-224. DOI: https://doi.org/10.1111/j.1744-7917.2010.01360.x
Hassanpour, M., Maghami, R., Rafiee-Dastjerdi, H., Golizadeh, A., Yazdanian, M., & Enkegaard, A. (2015). Predation activity of Chrysoperla carnea (Neuroptera: Chrysopidae) upon Aphis fabae (Hemiptera: Aphididae): Effect of different hunger levels. Journal of Asia-Pacific Entomology, 18(2), 297-302. DOI: https://doi.org/10.1016/j.aspen.2015.03.005
Hassanpour, M., Bagheri, M. R., Golizadeh, A., & Farrokhi, Sh. (2016). Functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to Trialeurodes vaporariorum (Hemiptera: Aleyrodidae): effect of different host plants. Biocontrol Science and Technology, 11, 1489-1503. DOI: https://doi.org/10.1080/09583157.2016.1216521
Hassanpour, M., & Elahi, M. (2023). Effect of two pepper cultivars on biological and population growth parameters of Myzus persicae and functional response of Chrysoperla carnea in two soil and hydroponic cultivation systems. Plant Pest Research13(3), 43-61. DOI: https://doi.org/ 10.22124/ iprj.2023.25485.1533. (in Farsi)
Heidarian Dehkordi, M., Allahyari, H., Talaei-Hasanlouie, R. & Parker, B. (2017) Functional response of Amblyseius swirskii (Acari: Phytoseiidae) on untreated and Beauveria bassiana-treated Frankliniella occidentalis (Thysanoptera: Thripidae). Biological Control of Pests and Plant Diseases, 2, 245-255. DOI: https://doi.org/10.22059/jbioc.2017.233824.198
Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 91, 385-398. DOI: https://doi.org/10.4039/Ent91385-7
Holling, C. S. (1966). The functional response of invertebrate predators to prey density. The Memoirs of the Entomological Society of Canada98(S48), 5-86. DOI: https://doi.org/10.4039/entm9848fv
Homayoonzadeh, M., Esmaeily, M., Talebi, K., Allahyari, H., Nozari, J., & Michaud, J. P. (2020). Micronutrient fertilization of greenhouse cucumbers mitigates pirimicarb resistance in Aphis gossypii (Hemiptera: Aphididae). Journal of Economic Entomology113(6), 2864-2872. DOI: https://doi.org/10.1093/jee/toaa202
Homayoonzadeh, M., Esmaeily, M., Talebi, K., Allahyarm, H., Reitz, S., & Michaud, J. P. (2022). Inoculation of cucumber plants with Beauveria bassiana enhances resistance to Aphis gossypii (Hemiptera: Aphididae) and increases aphid susceptibility to pirimicarb. European Journal of Entomology119, 1-11. DOI: https://doi.org/10.14411/eje.2022.001
Juliano, S. A. (2001). Nonlinear curve fitting: predation and functional response curves. In: Cheiner, S. M., and Gurven, J., (Eds.). Design and analysis of ecological experiments, (2nd ed.), Chapman and Hall, pp. 178-196. DOI: https://doi.org/10.1093/oso/9780195131871.003.0010
Kayahan, A. (2021). Functional response of Chrysoperla carnea on two different aphid species (Aphis fabae and Acyrthosiphon pisum). International Journal of Agriculture Environment and Food Sciences5(4), 561-570. DOI: https://doi.org/10.31015/jaefs.2021.4.16
Li, C., Wang, P., Menzies, N. W., Lombi, E., & Kopittke, P. M. (2017). Effects of changes in leaf properties mediated by methyl jasmonate (MeJA) on foliar absorption of Zn, Mn and Fe. Annals of Botany, 120(3), 405-415. DOI: https://doi.org/10.1093/aob/mcx063
Liu, Y., Li, R., & Li, S. (2022). Consumption patterns of the multicolored Asian ladybird Harmonia axyridis on the broad bean aphid Aphis craccivoraJournal of Asia-Pacific Entomology25(1), 101852. DOI:  https://doi.org/10.1016/j.aspen.2021.101852
Mahzoum, A. M., Villa, M., Benhadi-Marín, J., & Pereira, J. A. (2020). Functional response of Chrysoperla carnea (Neuroptera: Chrysopidae) larvae on Saissetia oleae (Olivier) (Hemiptera: Coccidae): Implications for biological control. Agronomy, 10(10), 1511. DOI: https://doi.org/10.3390/agronomy10101511
Majid, M., Khan, J. N., Ahmad Shah, Q. M., Masoodi, K. Z., Afroza, B., & Parvaze, S. (2021). Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agricultural Water Management245, 106572. DOI: https://doi.org/10.1016/j.agwat.2020.106572
Mashayekhi, P., & Tatari, M. (2017). Effect of different concentrations of nitrogen, phosphorus and potassium on some quantitative and qualitative characteristics of strawberry cv. selva in hydroponic culture. Iranian Journal of Soil Research30(4), 391-402. DOI: https://doi.org/10.22092/ ijsr.2017.109258
Moeezipoor, M., Kafil, M., Nooeei, S., & Allahyari, H. (2008). Functional response of predatory mite, Phytoseius plumifer (Canestrini& Fanzago) on different densities of Amphitetranychus viennensis (Zacher) and Tetranychus urticae (Koch). Journal of Agricultural Research, 8(3), 107-116.
Molles, M. C., & Pietruszka, R. D. (1987). Prey selection by a stonefly: the influence of hunger and prey size. Oecologia72, 473-478. DOI: https://doi.org/10.1007/BF00377582
Montoya-Alvarez, A. F., Ito, K., Nakahira, K., & Arakawa, R. (2010). Functional response of Chrysoperla nipponensis and Chrysoperla carnea (Neuroptera: Chrysopidae) to the cotton aphid Aphis gossypii Glover (Homoptera: Aphididae) under laboratory conditions. Applied Entomology and Zoology, 45(1), 201-206. DOI: https://doi.org/10.1303/aez.2010.201
Moradi, M., Hassanpour, M., Fathi, S. A. A., & Golizadeh, A. (2023). Functional response of the green lacewing, Chrysoperla carnea larvae on two aphid pests of the citrus: Aphis spiraecola and Aphis gossypii. Journal of Applied Research in Plant Protection, 11(4), 119-130. DOI: https://doi.org/10.22034/ARPP.2023.15869
Moreno-Delafuente, A., Garzo, E., Fereres, A., Viñuela, E., & Medina, P. (2020). Effects of a salicylic acid analog on Aphis gossypii and its predator Chrysoperla carnea on melon plants. Agronomy10(11), 1830. DOI: 10.3390/agronomy10111830
Mottaghinia, L., Hassanpour, M., Razmjou, J., Hosseini, M., & Chamani, E. (2016). Functional response of Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae) to Aphis gossypii Glover (Hemiptera: Aphididae): Effects of vermicompost and host plant cultivar. Neotropical Entomology45, 88-95. DOI: https://doi.org/10.1007/s13744-015-0343-0
Nedved, O., & Salvucci, S. A. R. A. (2008). Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) prefers toxic prey in laboratory choice experiment. European Journal of Entomology105(3), 431. DOI: https://doi.org/10.14411/eje.2008.055
O'Neil, R. J. (1997). Functional response and search strategy of Podisus maculiventris (Heteroptera: Pentatomidae) attacking Colorado potato beetle (Coleoptera: Chrysomelidae). Environmental Entomology26(6), 1183-1190. DOI: https://doi.org/10.1093/ee/26.6.1183
Ponce, P., Molina, A., Cepeda, P., Lugo, E., & MacCleery, B. (2014). Greenhouse design and control: CRC Press.
Rogers, D. (1972). Random search and insect population models. Journal of Animal Ecology, 41(2), 369-383. DOI: https://doi.org/10.2307/3474
Roosta, H. R. (2016). Plant nutrition in hydroponics. Vali-e-Asr University of Rafsanjan Press.
Saljoqi, A. U. R., Khan, I., Ahmad, I., Khan, J., Sattar, S., Khan, B. A., & Salim, M. (2023). Potential of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) fed on aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae) under controlled conditions.  Sarhad Journal of Agriculture, 39(2), 479-489. DOI: https://doi.org/10.17582/journal.sja/2023/39.2.479.489
Santosh, D. T., & Gaikwad, D. J. (2023). Advances in hydroponic systems: types and management. In Maitra S., Gaikwad, D. J., and Santosh D. T. (Eds). Advances in agricultural technology. Griffon, Canada, pp. 16-28.
SAS Institute (2002). The SAS system for Windows, ver. 9.1. SAS Institute, Cary, NC.
Skirvin, D. J. & Fenlon, J. S. (2003). The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acsarology, 31(1-2), 37-49. DOI: https://doi.org/10.1023/B:APPA.0000005107.97373.87 
Sobhani, M., Madadi, H., & Gharali, B. (2013). Host plant effect on functional response and consumption rate of Episyrphus balteatus (Diptera: Syrphidae) feeding on different densities of Aphis gossypii (Hemiptera: Aphididae) of Aphis gossypii (Hemiptera: Aphididae). Journal of Crop Protection2(3), 375-385. DOR: 20. 1001.1.22519041.2013.2.3.4.6
Taha, N., Abdalla, N., Bayoumi, Y., & El-Ramady, H. (2020). Management of greenhouse cucumber production under arid environments: a review. Environment, Biodiversity and Soil Security4, 123-136. DOI: https://doi.org/10.21608/jenvbs.2020.30729.1097
van Delden, S. H., Nazarideljou, M. J., & Marcelis, L. F. (2020). Nutrient solutions for Arabidopsis thaliana: a study on nutrient solution composition in hydroponics systems. Plant Methods, 16, 1-14. DOI: https://doi.org/10.1186 /s13007-020-00606-4
Veeravel, R., & Baskaran, P. (1997). Functional and numerical responses of Coccinella transversalis and Cheilomenes sexmaculata Fabr. Feeding on the melon aphid, Aphis gossypii Glov. Insect Science and its Application, 17, 335-339. DOI: https://doi.org/10.1017/S1742758400019196
Vogt, H., Bigler, F., Brown, K., Condolfi, M. P., Kemmeter, F., Kuhner, C., Moli, M., Travis, A., Ufer, A., Vineula, E., Wiadburger, M. & Waltersdorfer, A. (2000). Laboratory method to test effects of plant protection products on larvae of Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae). In: M. P. Condolfi, S. Blomel. & R. Forster (Eds.), Guidelines to Evaluate Side Effects of Plant Protection Products to Non-Target Arthropods (pp.27-44.). Reinheim, IOBC/WPRS.
War, A. R., Buhroo, A. A., Hussain, B., Ahmad, T., Nair, R. M. & Sharma, H. C. (2020). Plant defense and insect adaptation with reference to secondary metabolites. In Merillon, J. M. and Ramawat, K. G. (Eds.) Co-evolution of secondary metabolites (20th ed.). Springer. pp 1-28. DOI: https://doi.org/10.1007/978-3-319-96397-6_60
Zahedi, A., Razmjou, J., Rafiee-Dastjerdi, H., Leppla, N. C., Golizadeh, A., Hassanpour, M., & Ebadollahi, A. (2019). Tritrophic interactions of cucumber cultivar, Aphis gossypii (Hemiptera: Aphididae), and its predator Hippodamia variegata (Coleoptera: Coccinellidae). Journal of Economic Entomology112(4), 1774-1779. DOI: https://doi.org/10.1093/jee/toz072