تأثیر سامانه‌های کشت مخلوط چغندرقند و شبدر قرمز بر مهار زیستی شتهAphis fabae ، دشمنان طبیعی و صفات زراعی چغندرقند

نوع مقاله : مقاله پژوهشی


1 گروه آموزشی زراعت و اصلاح نباتات،دانشکده کشاورزی و منابع طبیعی، دانشگاه آزاد اسلامی واحد کرج، کرج،ایران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

3 گروه گیاهپزشکی ، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج ، ایران


کشت محصولات متنوع، یک استراتژی کلیدی درکشاورزی پایدار است. افزایش تنوع گیاهی در سامانه­های کشت مخلوط می­تواند در مهار زیستی آفات مناسب باشد. به منظور بررسی اثر کشت مخلوط چغندرقند – شبدر قرمز بر جمعیت Aphis fabae Aphis fabae Scopoli، دشمنان طبیعی شامل Coccinella septempunctata Linnaeus، Hippodamia variegata Goeze، Orius niger Wolf، Linnaeus O. minutus و Chrysoperla carnea Stephens و برخی صفات زراعی چغندرقند، آزمایشی در قالب طرح بلوک­های کاملاً تصادفی در 4 تکرار انجام شد. تیمارهای آزمایشی شامل: تک کشتی چغندرقند (شاهد) و هفت نوع سیستم کشت نواری شامل: 1) دو ردیف چغندرقند و چهار ردیف شبدر، 2) دو ردیف چغندرقند و سه ردیف شبدر، 3) یک ردیف چغندرقند و دو ردیف شبدر، 4) دو ردیف چغندرقند و دو ردیف شبدر، 5) سه ردیف چغندرقند و دو ردیف شبدر، 6) دو ردیف چغندرقند و یک ردیف شبدر و 7) چهار ردیف چغندرقند و دو ردیف شبدر بودند. نتایج این بررسی نشان داد که اثر تیمارهای مختلف کشت مخلوط چغندرقند و شبدر قرمز روی جمعیت شته سیاه باقلا، دشمنان طبیعی و صفات زراعی شامل عملکرد ریشه، عملکرد برگ و اندام هوایی در سطح احتمال 1 % معنی­دار می­باشد. نتایج این تحقیق نشان داد که تیمار دو ردیف چغندرقند و چهار ردیف شبدر قرمز می­تواند در مدیریت تلفیقی و مهار زیستی A. fabae در مزراع چغندرقند مفید باشد و صفات زراعی را بهبود دهد.


عنوان مقاله [English]

Effect of intercropping systems of sugar beet and red clover on biological control of Aphis fabae (Hem.: Aphididae), natural enemies, and agronomic traits of sugar beet

نویسندگان [English]

  • Maryam Moarefi 1
  • Ali Hamrahi 2
  • kobra fotouhi 3
1 Department of Agronomy and Plant Breeding, Karaj Branch, Islamic Azad University, Karaj, Iran.
2 Department of Plant Protection, College of Agriculture, Zanjan University, Zanjan, Iran,
3 Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Cultivation of diverse crops is a strategy key in sustainable agriculture. Increasing plant diversity in intercropping systems can be suitable for biological control of pests. In order to investigate the effect of mixed cultivation of sugar beet and red clover on the population of Aphis fabae Scopoli, natural enemies including Coccinella septempunctata Linnaeus, Hippodamia variegata Goeze, Orius niger Wolf, O. minutus Linnaeus, and Chrysoperla carnea Stephens, and some agricultural traits of sugar beet, an experiment was conducted in the form of completely randomized block design in four replications. Experimental treatments included monoculture of sugar beet (control) and seven types of strip cultivation systems including: 1) two rows of sugar beet  and four rows of red clover, 2) two rows of sugar beet and three rows of red clover, 3) one row of sugar beet and two rows of red clover, 4) two rows of sugar beet and two rows of red clover 5) three rows of sugar beet and two rows of red clover, 6) two rows of sugar beet and one row of red clover, 7) four rows of sugar beet and two rows of red clover. The results of this research showed that the different treatments of sugar beet and red clover intercropping on the aphid population, natural enemies, and agricultural traits including root yield, leaf yield, and shoot yield are significant at 1% probability level. The results of this research showed that the treatment of two rows of sugar beet and four rows of red clover can be useful in integrated pest management and biological control of A. fabae in sugar beet fields and improve agricultural traits.

کلیدواژه‌ها [English]

  • predators
  • Karaj
  • Integrated pest management
Abedi, A. A., Fathi, S. A. A. and Nouri-Ganbalani, G. 2014. Effect of strip cropping of sugar beet-alfalfa on population density of the sugar beet weevil, Lixus incanescens (Col.: Curculionidae) and species diversity of its natural enemies. Journal of Entomological Society of Iran 34(4): 1-14. (In Farsi)
Aguilera, G., Roslin, T., Miller, K., Tamburini, G., Birkhofer, K., Caballero-Lopez, B., Ann-Marie Lindström, S., Öckinger, E., Rundlöf, M., Rusch, A., Smith, H. G. and Bommarco, R. 2020. Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats. Journal of Applied Ecology 57(11): 2170-2179.
Altieri, M. A. and Nicholls, C. I. 2004. Biodiversity and pest management in agroecosystems. New York, NY: Haworth Press, New York.
Altieri, M. A., Nicholls, C. I. and Ponti, L. 2009. Crop diversification strategies for pest regulation in IPM systems. In: Radcliffe, E. B., Hutchinson, W. D. and Cancelado, R. E. (Eds). Integrated pest management. Cambridge University Press, Cambridge, UK. pp. 116-130.
Amala, U. and Shivalingaswamy, T. M. 2018. Effect of intercrops and border crops on the diversity of parasitoids and predators in agroecosystem. Egyptian Journal of Biological Pest Control 28(11): 1-4.
Anbalagan, V., Paulraja, M. G., Ignacimuthua, S., Baskar, K. and Gunasekaran, J. 2016. Natural enemies (Arthropoda-Insecta) biodiversity in vegetable crops in Northeastern Tamil Nadu, India. International Letters of Natural Sciences 53: 28–33.
Ann Bybee-Finley, K. and Ryan, M. R. 2018. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture 8(80): 1-24.
Anonymous, 2020-2021. Horticultural product report of year 2020-2021. Iran Ministry of Agriculture, Deputy of Economy and Planning, Information and Communication Technology Center. Available at: http://amar.maj.ir/portal/File/ShowFile.aspx?ID.
Azimi, S. and Vaez, N. 2019. Comparison of population of Aphis fabae and its natural enemies and yield in intercropping of faba bean (Vicia faba) and marigold (Calendula officinalis). Agricultural Science and Sustainable Production 29(1): 1-13.
Barrate, B. I. P. and Byers, R. A. 1992. Legume seedling feeding preferences of adult Sitona hispidulus (F.) (Coleoptera: Curculionidae). Environmental Entomology 21(1): 103-106.
Bickerton, M. W. and Hamilton, G. C. 2012. Effects of intercropping with flowering plants on predation of Ostrinia nubilalis (Lepidoptera: Crambidae) eggs by generalist predators in bell peppers. Environmental Entomology 41(3):612-620.
Borg, J., Kiær, L. P., Lecarpentier, C., Goldringer, I., Gauffreteau, A., Saint-Jean, S., Barot, S. and Enjalbert, J. 2017. Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Research 221: 298-313.
Cai, H., You, M. and Lin, C. 2010. Effects of intercropping systems on community composition and diversity of predatory arthropods in vegetable fields. Acta Ecologica Sinica, 30: 190-195.
Cheruiyot, D., Midega, C. A. O., Pittchar, J. O., Pickett, J. A. and Khan, Z. R. 2020. Farmers’ perception and evaluation of Brachiaria grass (Brachiaria spp.) genotypes for smallholder cereal-livestock production in east africa. Agriculture 10(268): 1-13.
Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A. and Zhao, W. 2018. Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews 185: 357-373.
Deguchi, S., Uozumi, S., Touno, E., Kaneko, M. and Tawaraya, K. 2012. Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Journal of Soil Science and Plant Nutrition 58: 169-172.
Deligeorgidis, P.N., Ipsilandis, C.G., Vaiopoulou, M., Kaltsoudas, G. and Sidiropoulos, G. 2005. Predatory effect of Coccinella septempunctata on Thrips tabaci and Trialeurodes vaporariorum. Journal of Applied Entomology 129: 246-249.
Doltra, J. and Olesen, J. E. 2013. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. European Journal of Agronomy 44: 98-108.
El-Fakharany, S., Samy, M., Ahmed, S. and Khattab, M. 2012. Effect of intercropping of maize, bean, cabbage and toxicants on the population levels of some insect pests and associated predators in sugar beet plantations. The Journal of Basic and Applied Zoology l65: 21-28.
Erfan, D. and Ostovan, H. 2005. Species diversity of flower bugs (Family: Anthocoridae) in Shiraz region. Journal of Agricultural Sciences 11: 81–95
Eskandari, H. and Ghanbari, A. 2010. Effect of different planting pattern of wheat (Triticum aestivum) and bean (Vicia faba) on grain yield, dry matter production and weed biomass. International Journal of Biological Sciences 2: 111-115.
Fathi, S. A. A. 2017a. Effect of strip-intercropping of spring canola with clover in improvement of natural biological control of Plutella xylostella (L.). Plant Pest Research 7(1): 73-86. (In Farsi)
Fathi, S. A. A. 2017b. Effect of intercropping systems of green bean and clover on biodiversity of natural enemies of Thrips tabaci Lindeman.  Plant Protection (Scientific Journal of Agriculture) 40(3): 1-15. (In Farsi)
Fathi, S. A. A. 2017c. Influence of intercropping systems of corn and sunflower in control of the European corn borer, Ostrinia nubilalis (Hübner). Plant Protection (Scientific Journal of Agriculture) 41(3): 1-18. (In Farsi)
Ferragut, F. and Gonzalez Zamora, J. E. 1994. Boletion de Sanidad Vegetal Plagas. Boletin de Sanidad Vegetal Plagas, 20: 89-101.
Fracchiolla, M., Renna, M., D’Imperio, M., Lasorella, C., Santamaria, P. and Cazzato, E. 2020. Living mulch and organic fertilization to improve weed management, yield and quality of broccoli raab in organic farming. Plants 9 (177): 1-11.
Gałęzewski, L., Jaskulska, I., Wilczewski, E. and Wenda-Piesik, A. 2020. Response of Yellow Lupine to the Proximity of Other Plants and Unplanted Path in Strip Intercropping. Agriculture 10(285): 1-14.
Haaland, C., Naisbit, R. E. and Bersier, L. F. 2011. Sown wildflower strips for insect conservation: A review. Insect Conservation and Diversity 4: 60- 80.
Hassan, S. 2009. Effect of variety and intercropping on two major cowpeas [Vigna unguiculata (L.) Walp] field pests in Mubi, Adamawa State, Nigeria. Journal of Horticulture and Forestry 1(2): 1-3.
Kabiri Raeis Abad, M., Fathi, S. A. A., Nouri – Ganbalani, G. and Besheli, A. 2019. The effect of intercropping of tomato and clover on control of melon aphid, Aphis gossypii Glover. Plant Protection (Scientific Journal of Agriculture) 42(4): 1-15. (In Farsi)
Klima, K., Synowiec, A., Puła, J., Chowaniak, M., Pużyńska, K., Gala-Czekaj, D., Kliszcz, A., Galbas, P., Jop, B., Dąbkowska, T. and Lepiarczyk, A. 2020. Long-term productive, competitive, and economic aspects of spring cereal mixtures in integrated and organic crop rotations. Agriculture 10(231): 2-14.
Konar, A., Singh, N. J. and Paul, R. 2010. Influence of intercropping on population dynamics of major insect pests and vectors of potato. Journal of the Entomological Research Society 34: 151-154.
Kugbe, X. J., Yaro, R. N., Soyel, J. K., Kofi, E. S. and Ghaney, P. 2018. Role of intercropping in modern agriculture and sustainability: A Review. British Journal for the History of Science 16: 67-75.
Leszczyńska, D., Klimek-Kopyra, A. and Patkowski, K. 2020. Evaluation of the productivity of new spring cereal mixture to optimize cultivation under different soil conditions. Agriculture 10(344): 1-13.
Li, J. M., Li, R. H., Zhang, J. E., Guo, J., Zhang, C. X., Liu, S. W, and Hei, Z. W. 2020. Integration of mixed-cropping and rice-duck co-culture has advantages on alleviating the non-point source pollution from rice production. Applied Ecology and Environmental Research 18(1): 1281-1300.
Li, M., Li, R., Zhanga, J., Liu, Sh., Hei, Z. and Qiu, Sh. 2019. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic and Applied Ecology 40: 67-77.
Li, M., Zhang, J., Liu, S., Ashraf, U., Zhao, B. and Qiu, S. 2019. Mixed-cropping systems of different rice cultivars have grain yield and quality advantages over mono-cropping systems. Journal of Science of Food Agricultural 99: 3326-3334.
Lia, X., Liu, Y., Duan, M., Yu, Z. H., Axmacherc, J. C. 2018. Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agriculture, Ecosystems and Environment 264(1): 54-62.
Liu, J. L., Ren, W., Zhao, W. Z. and Li, F. R. 2018. Cropping systems alter the biodiversity of ground- and soil-dwelling herbivorous and predatory arthropods in a desert agroecosystem: Implications for pest bio control. Agriculture Ecosystems and Environment 266: 109-121.
Luhmer, K., Blum, H., Kraska, T. H., Döring, T. H. and Pude, R. 2021. Poppy (Papaver somniferum L.) intercropping with spring barley and with white clover: benefits and competitive effects. Agronomy 11: 1-19.
Mader, V., Diehl, E., Fiedler, D., Thorn, S., Wolters, V. and Birkhofer, K. 2017. Trade-offs in arthropod conservation between productive and non-productive agri-environmental schemes along a landscape complexity gradient. Insect Conservation and Diversity 10: 236- 247.
Meena, A., Sharma, R. K., Chander, S., Sharma, D. K. and Sinha, S. R. 2019. Flower strip farmscaping to promote natural enemies’ diversity and eco-friendly pest suppression in okra (Abelmoschus esculentus). Indian Journal of Agricultural Science 89: 119- 123.
Muhammad, I., Sainju, U. M., Zhao, F., Khan, A., Ghimire, R., Fu, X. and Wang, J. 2019. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil and Tillage Research 192: 103-112.
Ogenga-Latigo, M. W., Ampofo, J. K. O. and Balidawa, C. W. 1992. Influence of maize row spacing on infestation and damage of intercropped beans by the bean aphid (Aphis fabae Scop.). I. Incidence of aphids. Field Crops Research 30(1-2): 111-121.
Omar, H. I. H., Hayder, M. F. and El-Sorady, A. E. M. 1994. Effect of sowing date of intercropping cowpea with cotton on infestation with some major pests. Egyptian Journal of Agricultural Research 72: 691-698.
Pahlavan-Yali, K., Pashairadi, Sh., Zarekhormizi, M., Mojibhaghadm, Z., Heidari-Latibari, M. and Hanly, G. 2017. Research on Coccinellidae (Coleoptera) fauna in Mazandarn province, Iranian Journal of Biological Control 31(3): 123-127
Piesik, A. W. and Piesik, D. 2021. Diversity of Species and the Occurrence and Development of a Specialized Pest Population-A Review Article. Agriculture 11(16): 1-14.
Pimentel, D. 1991. Diversification of biological control strategies in agriculture. Crop Protection 10(4): 243–253.
Piotrowska-Długosz, A. and Wilczewski, E. 2012. Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma Regional 189: 72-80.
Prosdocimi, M., Tarolli, P. and Cerdà, A. 2016. Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews 161: 191-203.
Pużyńska, K., Pużyński, S., Synowiec, A., Bocianowski, J. and Lepiarczyk, A. 2021. Grain yield and total protein content of organically grown oats–vetch mixtures depending on soil type and oats’ cultivar. Agriculture 11(79): 1-21.
Pużyńska, K., Synowiec, A., Pużyński, S., Bocianowski, J., Klima, K. and Lepiarczyk, A. 2021. The performance of oat-vetch mixtures in organic and conventional farming systems. Agriculture 11(332): 1-19.
Redlich, S., Martin, E. A. and Steffan-Dewenter, I. 2018. Landscape-level crop diversity benefits biological pest control. Journal of Applied Ecology 55: 2419- 2428.
Reiss, E. R. and Drinkwater, L. E. 2018. Cultivar mixtures: A meta-analysis of the effect of intraspecific diversity on crop yield. Ecological Applications 28: 62-77.
Romaneckas, K., Adamavičienė, A., Šarauskis, E. and Balandaitė, J. 2020. The Impact of Intercropping on Soil Fertility and Sugar Beet Productivity. Agronomy 10(9): 1-13.
Root, R. B. 1973. Organization of a plant-arthropod association in simple and diverse habi‐ tats: fauna of collards (Brassica oleracea). Ecological Monographs 43: 95-120.
Roshandel, S. and Noorbakhshian, J. 2016. Effect of mixed cropping of alfalfa and red clover on population density and infestation rate of alfalfa weevil Hypera postica (Col.: Curculionidae). Journal of Entomological Society of Iran 36(1):  29-38. (In Farsi)
Roubinet, E., Birkhofer, K., Malsher, G., Staudacher, K., Ekbom, B., Traugott, M. and Jonsson, M. 2017. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey. Ecological Applications 27: 1167-1177.
Rücknagel, J., Götze, P., Koblenz, B., Bachmann, N., Löbner, S., Lindner, S., Bischoff, J. and Christen, O. 2016. Impact on soil physical properties of using large-grain legumes for catch crop cultivation under different tillage conditions. European Journal of Agronomy 77: 28–37.
Schulz, V. S., Schumann, C., Weisenburger, S., Müller-Lindenlauf, M., Stolzenburg, K. and Möller, K. 2020. Row-intercropping maize (Zea mays L.) with biodiversity-enhancing flowering-partners-effect on plant growth, silage yield, and composition of harvest material. Agriculture 10(524): 1-27.
Shelton, A. M. and Badenes-Perez, F. R. 2006. Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51: 285-308.
Smith, H. G., Birkhofer, K., Clough, Y., Ekroos, J., Olsson, O. and Rundlöf, M. 2014. Beyond dispersal: the roles of animal movements in agricultural landscapes. In L.A. Hansson and S. Åkesson (Eds.). Animal Movement Across Scales. Oxford University Press, Oxford. pp. 51–70.
Snyder, W. E. 2019. Give predators a complement: Conserving natural enemy biodiversity to improve biocontrol. Biological Control 135: 73–82.
Songa, J.M., Jiang, N., Schulthess, F. and Omwega, C. 2007. The role of intercropping different cereal species in controlling lepidopteran stemborers on maize in Kenya. Journal of Applied Entomology 131(1): 40- 49.
Suresh, R., Sunder, S. and Pramod, M. 2010. Effect of intercrops on the temporal parasitization of Helicoverpa armigera (Hub.) by larval parasitoid, Campoletis chlorideae Uchida in tomato. Journal of Ecology and Environment 28: 2485-2489.
Szumigalski, A. and van Acker, R. 2005. Weed suppression and crop production in annual intercrops. Weed Science 53: 813- 825.
Teruhiko, Hata F., Lucas Béga, V., Ursi Ventura, M., dos Santos Grosso, F., Eduardo Poloni da Silva, J., Ribeiro Machado, R. and Sousa, V. 2020. Plant acceptance for oviposition of Tetranychus urticae on strawberry leaves is influenced by aromatic plants in laboratory and greenhouse intercropping experiments. Agronomy 10(193): 1-13.
Theunissen, J. 1994. Intercropping in field vegetable crops: Pest management by agrosystem. Pesticide Science 42(1): 65-68.
Tooker, J. F. and Frank, S. D. 2012. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology 49: 974- 985.
Triplehorn, C. A. and Johnson, N. F. 2005. Borror and Delong's introduction to the study of insects (7th ed.). Thomson Book/Cole.
Vaiyapuri, K. and Amanullah, M. M. 2010. Pest incidence and yield as influenced by intercropping unconventional green manures in cotton. Madras Agricultural Journal 97: 51–57.
Valizadegan, A. 2015. Study of yield quality and quantity in pot marigold (Calendula officinalis L.) and chickpea (Cicer arietinum L.) and species diversity and relative abundance of insects in row and strip intercropping. Journal of Agricultural Science and Sustainable Production 25(3): 15-30. (In Farsi)
Vandermeer, J. 1989. The ecology of intercropping. Cambridge University Press, Cambridge, 237 p.
Wan, N. F., Ji, X. Y., Deng, J. Y., Kiaer, L. P., Cai, Y. M. and Jiang, J. X. 2019. Plant diversification promotes bio control services in peach orchards by shaping the ecological niches of insect herbivores and their natural enemies. Ecological Indicators 99: 387-392.
Wanic, M., Żuk‐Gołaszewska, K. and Orzech, K. 2019. Catch crops and the soil environment-A review of the literature. Journal of Element ology 24: 31- 45.
Yactayo-Chang, J. P., Tang, H. V., Mendoza, J., Christensen, Sh. A. and Block, A. K. 2020. Plant defense chemicals against insect pests. Agronomy 10(1156): 1-14.