اثرات کشندگی و زیرکشندگی اسانس آزاد و نانوکپسوله پونه Mentha longifolia روی شب‌پره مدیترانه‌ای آرد Anagasta kuehniella (Lep.: Pyralidae)

نوع مقاله : مقاله پژوهشی

نویسنده

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران

10.22124/iprj.2022.5791

چکیده

در بررسی قبلی، نانو­سیلیکای حاوی اسانس پونهMentha longifolia L. (Lamiaceae)  به روش سل- ژل با هدف امکان‌سنجی کاربرد علیه جمعیت­های آفت ساخته شد. موفقیت روش بر اساس شاخص پراکندگی، راندمان ریزپوشانی، پتانسیل زتا و متوسط اندازه ذرات تایید شد. پژوهش حاضر با هدف بررسی سمیت فرمولاسیون آزاد و نانوکپسول اسانس پونه به دو روش تنفسی روی مراحل تخم، لارو­های سن پنجم و حشرات بالغ در بازه­های زمانی 24، 48 و 72 ساعته و موضعی روی لاروهای سن پنجم شب­پره مدیترانه­ای آرد  Anagasta kuehniella Zeller (Lepidoptera: Pyralidae)صورت گرفت. ارزیابی اثرات زیرکشندگی در غلظت زیرکشنده (LC25) به روش تدخینی و از طریق برآورد درصد بازدارندگی از تخم­گذاری، درصد بارآوری، درصد خروج حشرات بالغ و نرخ جفت­گیری هدف دیگر این مطالعه بود. نتایج زیست­سنجی­ها به روش تنفسی، همسویی سمیت تنفسی و تلفات جمعیت­ها با غلظت اسانس مصرفی و زمان در معرض قرارگیری را تایید نمود. ساخت نانو سیلیکای اسانس پونه،  افزایش 62/1 برابری سمیت موضعی و کشندگی نانوذرات اسانس در مقایسه با شکل آزاد اسانس علیه مرحله پنجم لاروی شب­پره مدیترانه­ای آرد را به دنبال داشت. یافته­ها به­ وضوح اثرات منفی زیرکشندگی اسانس آزاد پونه و نانوذرات آن در مقایسه با شاهد را بر تعداد تخم­های گذاشته شده به ازای هر حشره ماده (به­ترتیب 63 و 42 تخم به ازای هر حشره ماده)، درصد تفریخ تخم­های گذاشته شده (به­ترتیب 1/19% و 6/17%)، درصد خروج حشرات بالغ (به­ترتیب 4/16 و 3/11%) و نرخ جفت­گیری (به­ترتیب 48/6 و 6/3%) در پایان 72 ساعت تایید نمود. یافته­های حاصل از زیست­سنجی­، ضمن تایید سمیت تنفسی و موضعی اسانس آزاد و نانوکپسوله پونه، اثرات اختلالی اسانس بر پراسنجه­های بیولوژیکی شب­پره مدیترانه­ای آرد را نیز گزارش نمود. اثرات کشندگی و زیرکشندگی قوی­تر نانوذرات اسانس پونه در مقایسه با اسانس آزاد، استفاده از فرمولاسیون نانوی اسانس­های گیاهی به عنوان گزینه جایگزین­ یا مکمل حشره­کش­های مرسوم در مبارزه با آفات انباری را پیشنهاد می­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Lethal and sublethal effects of Mentha longifolia free and nanoencapsulated essential oils on Anagasta kuehniella (Lep.: Pyralidae)

نویسنده [English]

  • M. Malekmohammadi
Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

In previous study, nano hollow silica spheres have been synthesized by sol-gel method as a Mentha longifolia essential oil carrier and the success of essential oil encapsulation has been characterized based on particle size, polydispersity index, zeta potential, and encapsulation efficiency. The present research has been carried out on the findings of the previous study with the aim of evaluating 1) fumigant toxicity of Mentha longifolia free (M. EO) and nanoencapsulated (M. NP) essential oil against eggs, fifth instar larvae and adults of Anagasta kuehniella after 24, 48 and 72 h of exposure 2) topical toxicity of M. EO and M. NP against fifth instar larvae (mortality data obtained after 72 h exposure) 3) lifetime fecundity, %fertility, %adult emergence and copulation rate of A. kuehniella exposed to LC25 of M. EO and M. NP for 72 h. Fumigant toxicity was positively affected by the essential oil concentration and exposure time. Findings indicated that nanoencapsulation was associated with a 1.62-fold increase in the topical toxicity of M. longifolia essential oil to fifth instar larvae. Moreover, exposure to LC25 of M. EO and M. NP significantly decreased biological parameters (lifetime fecundity: 63 and 42 egg/female, percentage of fertility: 19.1 and 17.6%, percentage of adult emergence: 16.4 and 11.3%, copulation rate: 6.18 and 3.6% respectively). It is clear from the toxicological tests that nanoencapsulated essential oil produced stronger lethal and sublethal effects on A. kuehniella than free essential oil, thus can be regarded as potentially complementary or alternative to conventional insecticides in stored commodities.

کلیدواژه‌ها [English]

  • Anagasta kuehniella
  • Encapsulation
  • Essential oil
  • Lethal and Sublethal effects
Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267.
Abd El-Aziz, S. E. and Sharaby, A. M. 1997. Some biological effects of white mustard oil, Brassica alba against the cotton leafworm, Spodoptera littoralis (Boisd). Anz Schadlingskde Pflanzenschutz Umweltschutz 70: 62–64.
Abd El-Aziz, S. E. 2001. Persistence of some plant oils against the Bruchid beetle, Callosobruchus maculates (Col.: Bruchidae) during storage. Arab Universities Journal of Agricultural Sciences 9: 423–432.
Abduz Zahir, A., Bagavan, A., Kamaraj, C., Elangi, G. and Abdul Rahuman, A. 2012. Efficacy of plant-mediated silver nanoparticles against Sitophilus oryzae. Journal of Biopesticides 52: 95–102.
Alzogaray, R. A., Sfara, V., Moretti, A. N. and Zerba, E. N. 2013. Behavioural and toxicological responses of B. germanica (Dictyoptera: Blattellidae) to monoterpenes. European Journal of Entomology 110: 247–252.
Ansari, M. A., Vasudevan, P., Tandon, M. and Razdan, R. K. 2000. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresource Technology 71: 267-271.
Aouadi, G., Haouel, S., Soltani, A., Abada, M. B., Boushih, E., Elkahoui, S., Taibi, F., Ben Jemaa, J. M. and Bennadja, S. 2020. Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection 127: 471–482.
Bachrouch, O., Mediouni-Ben Jemaa, J., Aidi Waness, W., Talou, T., Marzouk, B. and Abderraba, M. 2010. Composition and insecticidal activity of essential oil from Pistacia lentiscus L. against Ectomyelois ceratoniae Zeller and Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Stored Products Research 46: 242–247.
Ben Chaaban, S., Haouel Hamdi, S., Mahjoubi, K. and Mediouni Ben Jemaa, J. 2019. Composition and insecticidal activity of essential oil from Ruta graveolens, Mentha pulegium and Ocimum basilicum against Ectomyelois ceratoniae Zeller and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection 126: 237–246.
Biondi, A., Zappala, L., Stark, J. D. and Desneux, N. 2013. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8: e76548.
Ciriminna, R. and Pagliaro, M. 2013. Sol–gel microencapsulation of odorants and flavors: opening the route to sustainable fragrances and aromas. Chemical Society Reviews 42: 9243-9250.
Debnath, N., Das, S., Seth, S., Chandra, R., Bhattacharya, S. and Goswami, A. 2011. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.) Journal of Pest Science 84: 99–105.
Ecran, F., Bas, H., Koc, M., Pandir, D. and Oztemiz, S. 2013. Insecticidal activity of essential oil of Prangos ferulace (Umbrelliferar) against E. kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hym.: Trichogrammatidae). Turkish Journal of Agriculture and Forestry 37: 719–725.
Eliopoulos, P., Hassiotis, C., Andreadis, S. and Porichi, A. 2015. Fumigant toxicity of essential oils from basil and spearmint against two major pyralid pests of stored products. Journal of Economic Entomology 108: 805–810.      
Emamjomeh, L., Imani, S., Talebi, K., Moharramipour, S. and Larijani, K. 2014. Chemical composition and insecticidal activity of essential oil of Zataria multiflora Boiss (Lamiaceae) against Ephestia kuehniella (Lepidoptera: Pyralidae). Pelagia Research Library 4: 253–257.
Enan, E. 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative Biochemistry and Physiology 130: 325–337.
Enan, E. 2005. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology 59: 161–171.
Gokce, A., Stelinski, L. L., Whalon, M. E. and Gut, L. J. 2010. Toxicity and antifeedant activity of selected plant extracts against larval oblique banded Leaf roller, Choristoneura rosaceana (Harris). Open Entomology Journal 4: 18–24.
Goswami, A., Roy, I., Sengupta, S. and Debnath, N. 2010. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519: 1252–57.
Gross, A. D., Norris, E. J., Kimber, M. J., Bartholomay, L. C. and Coats, J. R. 2017. Essential oils enhance the toxicity of permethrin against Aedes aegypti and Anopheles gambiae. Medical and Veterinary Entomology 55: 55–62.
Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F. and Benelli, G. 2018. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environmental Science and Pollution Research 25: 18802–18812.
Ikawati, S., Himawan, T., Abadi, A. L. and Tarno, H. 2020. Toxicity nanoinsecticide based on clove essential oil against Tribolium castaneum (Herbst). Journal of Pesticide Science 20: 1-7.
Isman, M. B. 2020. Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? Annual Review of Entomology 65: 233-249.
Jesser, E., Lorenzetti, A. S., Yeguerman, C., Murray, A. P., Domini, C. and Werdin-Gonzalez, J. O. 2020. Ultrasound assisted formation of essential oil nanoemulsions: emerging alternative for Culex pipiens pipiens (Diptera: Culicidae) and Plodia interpunctella (Lepidoptera: Pyralidae) management. Ultrasonics Sonochemistry 61: 104832.
Joffe, T., Gunning, R. V. and Allen, G. R. 2012. Investigating the potential of selected natural compounds to increase the potency of pyrethrum against houseflies Musca domestica (Diptera: Muscidae). Pest Management Science 68: 178–184.    
KarabOrkulu, S., Ayvaz, A., Yilmaz, S. & Akbulut, M. 2011. Chemical composition of some essential oils against Ephestia kuehniella. Journal of Economic Entomology 104: 1212–1219.
Kheirkhah, M., Ghasemi, V., Yazdi, A. and Rahban, S. 2015. Chemical composition and insecticidal activity of essential oil from Ziziphora clinopodioides Lam used against the Mediterranean flour moth, Ephestia kuehniella Zeller. Journal of Plant Protection Research 55: 260–265.
Koul, O. 2005. Insects Antifeedants. CRC Press, Boca Raton.
Kumari, A., Yadav, S. K. and Yadav, S. C. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B 75: 1–18.
Lai, F., Wissing, S. A., Muller, R. H. and Fadda, A. M. 2006. Artemisia arborescens L. essential oil–loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. American Association of Pharmaceutical Scientists 7: 1–9.
Licciardello, F., Muratore, G., Suma, P., Russo, A. and Nerin, C. 2013. Effectiveness of a novel insect-repellent food packaging in corporating essential oils against the red flour beetle (Tribolium castaneum). Innovative Food Science and Emerging Technologies 19: 173–180.
Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y. and Chen J. F. 2006. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin 41: 2268-2275.
Lopez, M. D. and Pascual-Villalobos, M. J. 2010. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications. Industrial Crops and Products 31: 284–288.
Louni, M., Shakarami, J. and Negahban, M. 2018. Insecticidal efficacy of nanoemulsion containing Mentha longifolia essential oil against Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Crop Protection 7:171–182.
Maedeh, M., Hamzeh, I., Hossein, D., Majid, A. and Reza, R. 2011. Bioactivity of essential oil from Satureja hortensis (Lamiaceae) against three stored-product insect species. African Journal of Biotechnology 10: 6620–6627.
Malekmohammadi, M., Jafaripoordaragahi, M. and Rafati, A. A. 2022. Mentha longifolia nanoencapsulated essential oil: Its synthesis and physico-chemical properties. Iranian Journal of Plant Protection Science 52: 41-58.  (In Farsi).
Margulis-Goshen, K. and Magdassi, S. 2012. Nanotechnology: an advanced approach to the development of potent insecticides. In: Ishaaya, I., Reddy, P.S. & Rami, H. A. (Eds.), Advanced Technologies for Managing Insect Pests. Springer Science and Business Media, New York.
Mediouni Ben Jemaa, J., Tersim, N., Boushih, E., Taleb-Toudert, K. and Khouja, M. 2013. Fumigant control of the Mediterranean flour moth Ephestia kuehniella with the Nobel Laurel Laurus nobilis essential oils. Tunisian Journal of Plant Protection 8: 33–44.
Menossi, M., Ollier, R. P., Casalongue, C. A. and Alvarez, V. A. (2021) Essential oil-loaded bio-nanomaterials for sustainable agricultural applications. Journal of Chemical Technology and Biotechnology 96: 2109-2122.
Najafi, M., Yousefi, Y. and Rafati, A. A. 2012. Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Separation and Purification Technology 85: 193-205.
Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V. and Thompson, M. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials 8: 543–557.
Nel, A. E., Xia, T., Madler, L. and Li, N. 2006. Toxic potential of materials at the nanolevel. Science 311: 622–627.
Norris, E. J., Gross, A. D. Bartholomay, L. C. and Coats, J. R. 2019. Plant essential oils synergize various pyrethroid insecticides and antagonize malathion in Aedes aegypti. Medical and Veterinary Entomology 33: 453-466.
Oliveira, A. P., Santana, A. S., Santana, E. D. R., Lima, A. P. S., Faro, R. R. N., Nunes, R. S., Limab, A. D., Blanka, A. F., Araujoc, A. P. A., Cristaldoa, P. F. and Baccia, L. 2017. Nanoformulation prototype of the essential oil of Lippia sidoides and thymol to population management of Sitophilus zeamais (Col.: Curculionidae). Industrial Crops and Products 107: 198–205.
Pagliaro, M. 2009. Silica-Based Materials for Advanced Chemical Applications. RSC Publishing, Cambridge.   
Pandir, D. and Bas, H. 2016. Compositional analysis and toxicity of four plant essential oils to different stages of Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Turkiye Entomoloji Dergisi 40: 185–195.
Pavela, R. 2015. Essential oils for the development of eco-friendly mosquito larvicides: a review. Industrial Crops and Products 76: 174–187.
Peixoto, M. G., Bacci, L., Blank, A. F., Araujo, A. P. A., Alves, P. B., Silva, J. H. S., Santos, A. A., Oliveira, A. P., Costa, A. S. and Blank, M. F. A. 2015. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Industrial Crops and Products 71: 31–36.
Planes, L., Catalan, J., Tena, A., Porcuna, J. L., Jacas, J. A., Izquierdo, J. and Urbaneja, A.  2013. Lethal and sublethal effects of spirotetramat on the mealybug destroyer, Cryptolaemus montrouzieri. Journal of Pest Science 86: 321–332.
Rattan, R. S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 29: 913–920.
Re, L., Barocci, S., Sonnino, S., Mencarelli, A. and Vivani, C. 2000. Linalool modifies the nicotinic receptor-ion channel kinetics at the mouse neuromuscular junction. Pharmacological Research 42: 177–182.
Regnault-Roger, C. 2013. Essential oils in insects control. In: Ramawat, K. G. & Merillon, J. M. (eds) Handbook of natural products. Springer-Verlag, Berlin.
Robertson, J. L., Russel, R. M., Preisler, H. K. and Savin, N. E. 2007. Bioassays with Arthropods. 2 nd ed. CRC Press, Inc, Boca Raton, FL.
Rossi, Y. E., Canavoso, L. and Palacios, S. M. 2012. Molecular response of Musca domestica L. to Mintostachys verticillata essential oil, (4R) (?) -pulegone and menthone. Fitoterapia 83: 336–342.
Rossi, Y. E. and Palacios, S. M. 2013. Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L. adults in the absence and presence of a P450 inhibitor. Acta Tropica 172: 33–37.
Sabbour, M. M. and Abd-El-Aziz, S. E. 2016. Roll of three essential oils and their Nano against Ephestia cautella (Lepidoptera: Pyralidae) under laboratory and store conditions. International Journal of PharmTech Research 9:194–200.
Sabbour, M. M. and Abd-El-Aziz, S.E. 2017. Screening effects of three natural oils andtheir nano against Ephestia kuehniella (Lepidoptera: Pyralidae) in laboratory and store. Bioscience Research 14: 408–416.
Sabbour, M. M. and Abd El-Aziz, S. E. 2019. Impact of certain nano oils against Ephestia kuehniella and Ephestia kuehniella (Lepidoptera: Pyralidae) under laboratory and store conditions. Bulletin of the National Research Centre 43: 80- 86.
Sfara, V., Zerba, E. N. and Alzogaray, A. 2009. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. Journal of Medical Entomology 46: 511–515.
Shafaie, F., Aramideh, S. H., Valizadegan, O. and Safaralizadeh, M. H. 2019. Bioactivity of essential oils, extracts and powders of Cupressus arizonica Greene, Juniperus communis L. and Mentha longifolia L. on three Stored product pests. Thai Journal of Agricultural Science 52: 205−219.
Shahmirzaei, Z., Izadi, H. and Imani, S. 2016. Study on the contact and fumigant toxicity of Mentha longifolia against the confused flour beetle (Tribolium castaneum). Iranian Journal of Medicinal and Aromatic Plants Research 32: 556–559.
Simon, J. Y. 2015. The Toxicology and Biochemistry of Insecticides. CRC Press, Boca Raton.
Stadler, T., Buteler, M. and Weaver, D. K. 2010. Novel use of nanostructured alumina as an insecticide. Pest Management Science 66: 577–579.
Taibi, F., Boumendjel, M., Moncef, Z., Omar, S., Khaldi, T., Delimi, A., Abdessmad, S., Rebani, H., Chnouga. H., Siakhene, N., Boumendjel, A. and Messarah, M. 2018. Conservation of stored food using plant’s extracts. Effect of Oregano (Oreganum vulgaris) essential oils on the reproduction and development of flour moth (Ephestia kuehniella). Cellular and Molecular Biology 64: 5–11.
Tak, J. H. and Isman, M. B.  2015. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Scientific Reports 5: 474–480.
Tak, J. H., Jovel, E. and Isman, M. B. 2016. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Management Science 72: 474–480.
Tarelli, G., Zerba, E. N. and Alzogaray, A. 2009. Toxicity to vapor exposure and topical application of essential oils and monoterpenes on Musca domestica (Diptera: Muscidae). Journal of Economic Entomology 102: 1383–1388.
Titouhi, F., Amri, M., Messaoud, C., Haouel, S., Youssfi, S., Cherif, A. and Mediouni Ben Jemaa, J. 2017. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. Journal of Stored Products Research 72: 11–20.
Tunc, I., Berger, B., Erler, F. and Dagli, F. 2000. Ovicidal activity of essential oils from five plants against two stored-product insects. Journal of Stored Products Research 36: 161–168.
Rattan, R.S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin, Crop Protection 29: 913–920.
Ulukanli, Z., Karaborklu, S., Bozok, F., Ates, B., Erdogan, S., Cenet, M. and Karaaslan, M. G. 2014. Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. Chinese Journal of Natural Medicines 12: 901–910.
Upadhyay, R. K. and Ahmad, S. 2011. Management strategies for control of stored grain insect pests in farmer stores and public warehouses. World Journal of Agricultural Sciences 7: 527–549.
Veal, L. 1996. The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complementary Therapies in Nursing and Midwifery 2: 97–101.
Vincent, J. F. V. and Wegst, U. G. K. 2004. Design and mechanical properties of insect cuticle. Arthropod Structure and Development 33: 187–199.
Vishwakarma, G. S., Gautam, N., Babu, J. N., Mittal, S. and Jaitak, V. 2016. Polymeric encapsulates of essential oils and their constituents: a review of preparation techniques, characterization and sustainable release mechanisms. Polymer Reviews 56: 668–701.
Werdin Gonzalez, J. O., Gutierrez, M. M., Ferrero, A. A. and Band, B. F. 2014. Essential oils nanoformulations for stored-product pest control- characterization and biological properties. Chemosphere 100: 130–138.
Werdin Gonzalez, J. O., Jesser, E. N., Yeguerman, C. A., Ferrero, A. A. and Band, B. F. 2017. Polymer nanoparticles containing essential oils: new options for mosquito control. Environmental Science and Pollution Research 24: 17006–17015.
Werdin Gonzalez, J. O., Laumann, R. A., daSilveira, S., Moraes, M. C. B., Borges, M. and Ferrero, A. A. 2013. Lethal and sublethal effects of four essential oils on the egg parasitoids Trissolcus basalis. Chemosphere 92: 608–615.
Werdin Gonzalez, J. O., Stefanazzi, N., Murray, A. P., Ferrero, A. A. and Band, B. F. 2015. Novel nanoinsecticides based on essential oils to control the German cockroach. Journal of Pest Science 88: 393–404.
Werdin Gonzalez, J. O., Yeguerman, C., Marcovecchio, D., Delrieux, C., Ferrero, A. A. and Band, F. B. 2016. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the German cockroach, Blatella germanica. Ecotoxicology and Environmental Safety 130: 11–18.

Wen, L.X., Li, Z. Z., Zou, H. K., Liu, A.Q. and Chen, J. F. 2005. Controlled release of avermectin from porous hollow silica nanoparticles. Pest Management Science 61: 583–590.

Xu, H., Song, T., Bao, X. Q. and Hu, L. L. 2005. Site-directed research of magnetic
nanoparticles in magnetic drug targeting. Journal of Magnetism and Magnetic Materials
293: 514–519.
Yang, F. L., Li, X. G. and Lei, C. L. 2009. Structural characterization of nanoparticles loaded with garlic essential oils and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57: 10156–10162.
Zallaghi, N. and Ahmadi, M. 2020. Combined action of Lavandula angustifolia Miller essential oil and gamma irradiation treatment on some biological aspects of the Mediterranean flour moth Ephestia kuehniella (Zeller). International Journal of Pest Management 67: 203–215.