شناسایی ترکیبات آلی فرّار رقم‌های انار و اثر آنها بر جلب کرم گلوگاه انار Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 گروه گیاه‌پزشکی، دانشکده علوم و مهندسی کشاورزی، دانشگاه تهران، کرج

3 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه ولی‌عصر رفسنجان، رفسنجان

10.22124/iprj.2021.5255

چکیده

کرم گلوگاه انار Ectomyelois ceratoniae ، یک آفت کلیدی در باغ‌های انار در ایران است. استفاده از ترکیبات فرّار گیاهی به­عنوان یکی از عوامل موثر در تغییر رفتار حشرات است که گامی مهم در مبارزه با آفات و در نتیجه کاهش مصرف آفت­کش‌ها و کاهش خطر برای انسان و محیط­زیست است. در این راستا، ترکیب­های آلی فرّار از شاخ و برگ و میوه درختان انار رقم‌های کدرو، رباب و شیرین­شهوار جمع­آوری و با روش کروماتوگرافی گازی- طیف­سنجی جرمی (GC-MS) شناسایی شدند. به ترتیب، در شاخ و برگ این رقم­ها 17، 33 و 24 و در میوه آنها 42، 23 و 26 ترکیب آلی فرّار شناسایی شد. فراوان­ترین ترکیب شناسایی شده در شاخ و برگ و میوه رقم کدرو به­ترتیب 2,6-Dimethoxyphenol (01%/51) و 6- Aza-5,7,12,14-tetrathiapentacene (92%/36) بود. این ترکیبات به­ترتیب در شاخ و برگ و میوه رقم رباب، Bis (2-ethylhexyl) phthalate (37%/46) و 6-Aza-5,7,12,14-tetrathiapentacene (24%/32) و در شاخ و برگ و میوه رقم شیرین­شهوار، 9,17-Octadecadienal, (Z)- (62%/27) و Benzoic acid, 2,5-bis (trimethylsiloxy) -trimethylsilyl ester (25%/46) از ترکیبات اصلی بود. بررسی پاسخ بویایی ماده‌های‌ جفت­گیری­کرده کرم گلوگاه انار در تونل باد نشان داد که حشره‌های ماده از نظر آماری به­صورت متفاوت به بوی شاخ و برگ و میوه ارقام کدرو، رباب و شیرین­شهوار درختان انار جذب می­شوند. نتیجه این پژوهش می­تواند در توسعه روش­های مدیریت بر اساس به­کارگیری مواد پیام­رسان شیمیایی همانند شکار انبوه، دورکردن کرم گلوگاه انار و یا جلب دشمنان طبیعی آن استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of volatile organic compounds of pomegranate varieties and their effects on attraction of the carob moth, Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae)

نویسندگان [English]

  • H. Sahraeian 1
  • S. A. Safavi 1
  • V. Hosseininaveh 2
  • M. Ziaadini 3
1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran,
2 Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 Department of Plant Protection, Faculty of Agricultural Science, Valiasr University, Rafsanjan, Iran
چکیده [English]

Carob moth, Ectomyelois ceratoniae is a key pest in pomegranate orchards in Iran. The use of volatile plant compounds as one of the effective factors in changing the behavior of insects can be an important step in combating pests and thus reduce the use of pesticides and the risk to humans and the environment. In this regard, volatile organic compounds from the foliage and fruits of pomegranate trees of Kadro, Rabbab and Shirin Shahvar varieties were collected and identified by gas chromatography-mass spectrometry (GC-MS). Respectively, in foliage of mentioned pomegranate varieties, 17, 33 and 24, and in their fruit 42, 23 and 26 volatile organic compounds were identified. The most abundant constituents were 2,6-Dimethoxyphenol (51.01%) and 6- Aza-5,7,12,14 - tetrathiapentacene (36.92%) in Kadro foliage and fruit, respectively. They were in Bis (2-ethylhexyl) phthalate (46.37%) and 6-Aza-5,7,12,14-tetrathiapentacene (32.24%) respectively in Rabbab foliage and fruit. Besides, 9,17-Octadecadienal, (Z) (27.62%) and Benzoic acid-2,5-bis-(trimethylsiloxy)-trimethylsilyl ester (46.25%) were the major components respectively in foliage and fruit of Shirin Shahvar variety. Examination of the olfactory response of female insects of Carob moth in the wind tunnel showed that female insects were differently attracted to the odor of pomegranate foliage and fruits of Kadro, Rabbab and Shirin Shahvar cultivars by statistical analysis. These data may be useful in semiochemically-based management strategies in the pomegranate orchards such as mass trapping or deter of Carob moth or attraction of natural enemies.

کلیدواژه‌ها [English]

  • Gas chromatography
  • Mass spectrometry
  • Olfactometry
  • Semiochemicals
  • Carob moth
Al-Rubeai, H. F. 1987. Growth and development of Ectomyelois ceratoniae (Lepidoptera: Pyralidae) under laboratory mass-rearing conditions. Journal of Stored Products Research 23: 133–135.
Amos Fawole, O. and Linus Opara, U. 2014. Physico-mechanical, phytochemical, volatile compounds and free radical scavenging properties of eight pomegranate cultivars and classification by principal component and cluster analyses. British Food Journal 116(3): 544–567.
Andreu-Sevilla, A. J., Mena, P., Martí, N., García Viguera, C. and Carbonell-Barrachina, Á. A. 2013. Volatile composition and descriptive sensory analysis of pomegranate juice and wine. Food Research International 54(1): 246–254.
Baker, T. C., Francke, W., Millar, J. G., Löfstedt, C., Hansson, B., DU, J. W., Phelan, P. L., Vetter, R. S., Youngman, R. and Todd, J. L. 1991. Identification and bioassay of sex pheromone components of carob moth, Ectomyelois ceratoniae (Zeller). Journal of Chemical Ecology 17: 1973–1988.
Beaulieu, J. C., Lloyd, S. W., Preece, J. E., Moersfelder, J. W., Stein-Chisholm, R. E. and Obando-Ulloa, J. M. 2015. Physicochemical properties and aroma volatile profiles in a diverse collection of California-grown pomegranate (Punica granatum L.) germplasm. Food Chemistry 181: 354–364.
Beck, J. J., Light, D. M. and Gee, W. S. 2014a. Electrophysiological responses of male and female Amyelois transitella antennae to pistachio and almond host plant volatiles. Entomologia Experimentalis et Applicata 153: 217-230.
Beck, J. J., Mahoney, N. E., Cook, D., Gee, W. S., Baig, N. and Higbee, B. S. 2014b. Comparison of the volatile emission profiles of ground almond and pistachio mummies: Part 1 - Addressing a gap in knowledge of current attractants for navel orange worm. Phytochemistry Letters 9: 102-106.
Beck, J. J., Mahoney, N. E., Higbee, B. S., Gee, W. S., Baig, N. and Griffith, C. M. 2014c. Semiochemicals to monitor insect pests-future opportunities for an effective host plant volatile blend to attract navel orange-worm in pistachio orchards. ACS Symposium Series 1172: 191-210.
Bengtsson, M., Bäckman, A. C., Liblikas, I., Ramirez, M. I., Borg-Karlson, A. K., Ansebo, L., Anderson, P., Löfqvist, J. and Witzgall, P. 2001. Plant odor analysis of apple: Antennal response of codling moth females to apple volatiles during phenological development. Journal of Agricultural and Food Chemistry 49: 3736-3741.
Calatayud, P. A., Ahuya, P. and Le Ru, B. 2014. Importance of the experimental setup in research on attractiveness of odours in moths: an example with Busseola fusca. Entomologia Experimentalis et Applicata 152: 72–76.
Casado, D. 2007. Cydia pomonella (L) behavior and responses to host volatiles. Journal of Theoretical Biology 235: 199–206.
Chung, T. Y., Eiserich, J. P. and Shibamoto, T. 1993. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200℃. Journal of Agricultural and Food Chemistry 41(9): 1467–1470.
Cook, S. M., Khan, Z. R. and Pickett, J. A. 2007. The use of push-pull strategies in integrated pest management. Annual Review of Entomology 52: 375-400.
Cossé, A. A., Endris, J. J., Millar, J. G. and Baker, T. C. 1994. Identification of volatile compounds from fungus-infected date fruit that stimulate upwind flight in female Ectomyelois ceratoniae. Entomologia Experimentalis et Applicata 72: 233-238.
Cox, P. D. 1976. The influence of photoperiod on the life-cycle of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Journal of Stored Products Research 15: 111–115.
De Lange, E. S., Salamanca, J., Polashock, J. and Rodriguez-Saona, C. 2019. Genotypic variation and phenotypic plasticity in gene expression and emissions of herbivore-induced volatiles, and their Potential Tritrophic Implications, in Cranberries. Journal of Chemical Ecology 45(3): 298-312.
Diaz-Montano, J. and Trumble, J. T. 2013. Behavioral responses of the potato psyllid (Hemiptera: Triozidae) to volatiles from dimethyl disulfide and plant essential oils. Journal of Insect Behavior 26(3): 336-351.
Dicke, M. and Baldwin, I. T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science 15(3): 167-175.
Dudareva, N., Klempien, A., Muhlemann, J. K. and Kaplan, I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist 198: 16-32.
Dudareva, N., Negre, F., Nagegowda, D. A. and Orlova, I. 2006. Plant volatiles: recent advances and future perspectives. Critical Reviews in Plant Sciences 25: 417-440.
Engelberth, J., Alborn, H. T., Schmelz, E. and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America 101: 1781-1785.
Fakharzadeh, A. 2002. Rearing of pomegranate neckworm, Ectomyelois ceratoniae (Zeller) on artificial diet and evaluation of some oviposition stimulants. M. Sc. dissertation, University of Tehran, 87 pp.
Farazmand, H, Sirjani, M. and Tufa, K. 2008. Study on the effect of crown covering of pomegranate flowers on control for reduction of the damage of pomegranate fruit moth, Ectomyelois ceratoniae (Lep., Pyralidae) in Khorasan-Razavi province. Proceedings of the 18th Iranian Plant Protection Congress, University of Bu-Ali Sina, Hamadan, p. 318.
Fürstenau, B., Adler, C., Schulz, H. and Hilker, M. 2016. Host habitat volatiles enhance the olfactory response of the larval parasitoid Holepyris sylvanidisto specifically host-associated cues. Chemical Senses 41(7): 611-621.
Gershenzon, J. 2000. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology 122: 205-214.
Gothilf, S. 1984. Biology of Spectrobates ceratonia on almonds in Israel. Phytoparasitica 12: 77-87.
Grison-Pigé, L., Hossaert-McKey, M., Greeff, J. M. and Bessière, J. M. 2002. Fig volatile compounds - A first comparative study. Phytochemistry 61: 61-71.
Güler, Z., and Gül, E. 2016. Volatile organic compounds in the aril juices and seeds from selected five pomegranates (Punica granatum L.) cultivars. International Journal of Food Properties 20(2): 281–293. 
Holzinger, R., Rottenberger, S., Crutzen, P. J. and Kesselmeier, J. 2000. Emissions of volatile organic compounds from Quercus ilex L. measured by proton transfer reaction mass spectrometry under different environmental conditions. Journal of Geophysical Research: Atmospheres 105: 573-580.
Hosseini, S.A., Goldansaz, S.H., Menken, S., Wijk, M., Roessingh, P. and Groot, A. 2017. Field attraction of carob moth to host plants and conspecific females. Journal of Economic Entomology 110(5): 2076-2083.
Hosseini, S. A., Goldansaz, S. H., Groot, A. T., Menken, S. B. J., Van Der Wielen, F., Wissel, C., Vercammen, J., De Rijke, E. and Roessingh, P. 2021. Identification of bioactive plant volatiles for the carob moth by means of GC-EAD and GC-Orbitrap. Applied Sciences 11: 8603.
Howse, P. E., Stevens, I. D. R. and Jones., O. T. 1998. Insect pheromones and their use in pest management. Chapman and Hall, London, UK.
Jung, J.-S. 2014. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of Pomegranate (Punica granatum) by TDGC/MS. International Journal of Bio-Science and Bio-Technology 6(3): 169–182. 
Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 23-88.
Landolt, P. J. and Guédot, C. 2008. Field attraction of codling moths (Lepidoptera: Tortricidae) to apple and pear fruit, and quantitation of kairomones from attractive fruit. Annals of the Entomological Society of America 101: 675-681.
Loughrin, J. N., Hamilton-Kemp, T. R., Andersen, R. A. and Hildebrand, D. F. 1990. Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry 29: 2473-2477.
Mehrnejad, M. 2002. Biology of carob moth, Ectomyelois ceratoniae, new pest on pistachio in Rafsanjan. Applied Entomology and Phytopathology 60: 1-11.
Misumi, J., Nagano, M. and Nomura, S. 1982. An experimental study on the neurotoxicity of 2-Octanone and 2-Hexanaol, a metabolite of n-Hexane. Sangyo Igaku 24(5): 475–484.
Molnár, B. P., Tóth, Z., Fejes-Tóth, A., Dekker, T. and Kárpáti, Z. 2015. Electro-physiologically-active maize volatiles attract gravid female European Corn Borer, Ostrinia nubilalis. Journal of Chemical Ecology 41(11): 997–1005.
Mozaffarian, F., Sarafrazi, A. and Ganbalani, G. N. 2007. Host plant-associated population variation in the carob moth Ectomyelois ceratoniae in Iran: A geometric morphometric analysis suggests a nutritional basis. Journal of Insect Science 7: 1536–2442.
Nay, J. E. 2006. Biology, ecology, and management of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae), a pest of dates, Phoenix dactylifera L., in southern California. PhD. Dissertation. University of California, Riverside, USA.
Ozawa, R., Shiojiri, K., Matsui, K. and Takabayashi, J. 2013. Intermittent exposure to traces of green leaf volatiles triggers the production of (Z)-3-hexen-1-yl acetate and (Z)-3-hexen-1-ol in exposed plants. Plant Signaling and Behavior 8(11): e27013.
Pare, P. W. and Tumlinson, J. H. 1997. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants. Plant Physiology 114: 1161-1167.
Patt, J. M. and Sétamou, M. 2010. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environmental Entomology 39: 618-624.
Pickett, J. A. and Khan, Z. R. 2016. Plant volatile-mediated signaling and its application in agriculture: successes and challenges. New Phytologist 212: 856-870.
Porat, R. and Ulrich, D. 2012. Identification of aroma-active compounds in “wonderful” pomegranate fruit using solvent-assisted flavour evaporation and headspace solid-phase micro-extraction methods. European Food Research and Technology 235(2): 277–283.
Robbins, P. S., Alessandro, R. T., Stelinski, L. L. and Lapointe, S. L. 2012. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomologist 95: 774-776.
Roitman, J. N., Merrill, G. B. and Beck, J. J. 2011. Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California. Journal of the Science of Food and Agriculture 91: 934-942.
Rӧse, U. S. R., Manukian, A., Heath, R. R. and Tumlinson, J. H. 1996. Volatile semiochemicals released from undamaged cotton leaves: a systemic response of living plants to caterpillar damage. Plant Physiology 111: 487–495.
Scutareanu, P., Bruin, J., Posthumus, M. A. and Drukker, B. 2003. Constitutive and herbivore‐induced volatiles in pear, alder and hawthorn trees. Chemoecology 13(2): 63-74.
Shin, B. R., Song, H. W., Lee, J. G., Yoon, H. J., Chung, M. S. and Kim, Y. S. 2016. Comparison of the contents of benzo-(a)-pyrene, sesamol and sesamolin, and volatiles in sesame oils according to origins of sesame seeds. Applied Biological Chemistry 59(1): 129–141.
Shu, Y., Zhang, Z., Wang, Z., Ren, H. and Wang, H. 2013. Research on characteristic aromatic compounds in Jujube Brandy. Proceedings of the International Conference on Applied Biotechnology 249: 499–506. 
Smart, L. E. and Blight, M. M. 1997. Field discrimination of oilseed rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilis. Journal of Chemical Ecology 23: 2555-2567.
Soufbaf M., Salehi B., Babaei M., Kalantarian N., Zanganeh A. H., Babaei M., Fathollahi H., Ahari Mostafavi H., Mansourifard M. A., Hoseini Baghdad Abad S. A. H., Mirvakili S. J., Zare Bidoki R., Tollabi H. A. and Amiri Aqda S. A. 2017. Using sterile insect technique against Carob moth, Ectomyelois ceratoniae (Zeller) (Lep.: Pyralidae), in Yazd province, Iran. Journal of the Entomological Society of Iran 37(1): 55-65 
Talebpour, Z., Najafi, S., Sonboli, A., Firozy, M. and Khosroshahi, M. 2013. Comparison of Chemical Compositions of the Tanacetum sonbolii essential oils using head space sorptive extraction and hydrodistillation methods. Journal of Medicinal Plants 12(4): 150-159.
Tasin, M., Anfora, G., Ioriatti, C., Carlin, S., De Cristofaro, A., Schmidt, S., Bengtsson, M., Versini, G. and Witzgall, P. 2005. Antennal and behavioral responses of grapevine moth Lobesia botrana females to volatiles from grapevine. Journal of Chemical Ecology 31(1): 77-87.
Tholl, D., Boland, W., Hansel, A., Loreto, F., Rӧse U. S. R. and Schnitzler J. P. 2006. Practical approaches to plant volatile analysis. The Plant Journal 45: 540–560.
Tripathi, J., Chatterjee, S., Gamre, S., Chattopadhyay, S., Variyar, P. S. and Sharma, A. 2014. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.). LWT - Food Science and Technology 59(1): 461–466.
Vetter, R. S., Tatevossian, S. and Baker, T. C. 1997. Reproductive behavior of the female carob moth, (Lep.: Pyralidae). Pan-Pacific Entomologist 73(1): 28–35.
Xu, J., Liu, B. and Liu, X. 2011. Carotenoids synthesized in citrus callus of different genotypes. Acta Physiologiae Plantarum 33: 745–753.
Yan, F., Bengtsson, M. and Witzgall, P. 1999. Behavioral response of female codling moths, Cydia pomonella, to apple volatiles. Journal of Chemical Ecology 25: 1343-1351.
Yousefi, M., Jalali Sendi, J. and Salehi, L. 2004. Biology of the carob moth, Specterobates ceratoniae Zeller (Lep.: Pyralidae) in different temperature regiments under laboratory conditions. Journal of Agricultural Science 1: 29–38.
Yuan, J., Gan, T., Liu, Y., Gao, H., Xu, W., Zhang, T. and Jiang, H. 2017. Composition and antimicrobial activity of the essential oil from the branches of Jacaranda cuspidifolia Mart. growing in Sichuan, China. Natural Product Research 32(12): 1451–1454.
Zaka, S. M., Zeng, X. N., Holford, P. and Beattie, G. A. C. 2010. Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Science 17(1): 39-45.
Zhang, Z. Q., Sun, X. L., Xin, Z. J., Luo, Z. X., Gao, Y., Bian, L. and Chen, Z. M. 2013. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua. Journal of Chemical Ecology 39: 1284-1296.