پایش حساسیت جمعیت‌های مختلف پسیل پسته Agonoscena pistaciae (Hem.: Psyllidae) در برابر ایمیداکلوپرید و کلرپایریفوس در باغ‌های پسته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه آموزش عالی جهاد دانشگاهی کاشمر، سازمان جهاد دانشگاهی خراسان رضوی، ایران

2 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی استان گلستان، سازمان تحقیقات آموزش و ترویج کشاورزی، گرگان، ایران

3 بخش تحقیقات آفت‌کش‌ها، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

4 گروه گیاه‌پزشکی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

چکیده

استفاده مکرر و گسترده از آفت­کش­های گوناگون به منظور کنترل پسیل معمولی پسته (Agonoscenapistaciae)،به عنوان مهم­ترین آفت درختان پسته، احتمال بروز کاهش حساسیت به آفت­کش­ها را در این آفت فراهم کرده است. در این پژوهش، با انجام زیست­سنجی به روش غوطه­وری دیسک برگی و براساس دز افتراقی، حساسیت 13 جمعیت پسیل پسته جمع­آوری شده از باغ­های پسته بردسکن، خلیل­آباد و فیض­آباد نسبت به حشره­کش­های ایمیداکلوپرید و کلرپایریفوس مورد بررسی قرار گرفت. نتایج آزمون زیست­سنجی نشان داد که میزان LC50حشره­کش­های ایمیداکلوپرید و کلرپایریفوس روی جمعیت حساس به ترتیب برابر با 2/261 و 03/83 میلی گرم در لیتر است. نتایج آزمون­های زیست­سنجی جمعیت­ها تحت تاثیر دز افتراقی (یعنی LC90 جمعیت حساس) نشان داد که همه جمعیت­های مختلف پسیل پسته مورد آزمایش، نسبت به کلرپایریفوس حساس هستند؛ ولی نتایج زیست­سنجی ایمیداکلوپرید حاکی از وجود اختلاف معنی­دار در میزان حساسیت جمعیت­های مختلف به این آفت­کش نسبت به جمعیت حساس است. بیش­ترین درصد تلفات با کاربرد دز افتراقی، مربوط به جمعیت کندر حساس و کم­ترین آن مربوط به جمعیت­های جلال­آباد، ظاهرآباد و کندر مقاوم بود. در آزمون­های بیوشیمیایی، اندازه­گیری فعالیت استرازی بیانگر آن است که یکی از سازوکارهای کاهش حساسیت پسیل پسته به ایمیداکلوپرید افزایش فعالیت استرازی است؛ به­طوری که فعالیت این آنزیم در جمعیت حساس 5/2 برابر کم‌تر از جمعیت های با حساسیت پایین‌تر بود. هم­چنین بررسی الگوی باندی این آنزیم در تحلیل زایموگرامی نشان دادکه تمام جمعیت­ها دارای دو ایزوفرم آنزیمی هستند که در جمعیت­های مختلف با جمعیت حساس از لحاظ کیفی متفاوت می­باشد. علاوه بر این، اندازه­گیری فعالیت آنزیم گلوتاتیون­اس­-ترانسفراز نشان داد که این سامانه آنزیمی نیز در کاهش حساسیت پسیل پسته به ایمیداکلوپرید درگیر است.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring of susceptibility of different populations of pistachio psyllid Agonoscena pistaciae (Hem.: Psyllidae) to imidacloprid and chlorpyrifos in pistachio orchards

نویسندگان [English]

  • L. Kamali Damavandi 1
  • M. Sharifi 2
  • N. Memarezadeh 3
  • M. Ghadamyari 4
1 Higher Education Institute of Kashmar University Jihad, Khorasan Razavi University Jihad Organization, Kashmar, Iran
2 Plant Protection Research Department, Golestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran
3 Pesticide Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran,
4 Department of Plant Protection, Agricultural Science Faculty, University of Guilan, Rasht, Iran
چکیده [English]

Frequent and extensive use of various pesticides to control of common pistachio psylla (Agonoscenapistaciae), as one of the most important pests of pistachio, has provided the possibility of reduced susceptibility of this pest to pesticides. In this study, the susceptibility of 13 populations of A. pistaciae collected from pistachio orchards at areas of Bardaskan, Khalil Abad and Feiz Abad were studied to imidaclopridand to chlorpyrifos using bioassay experiments by leaf disc dipping method and based on the discriminating dose. The bioassay results indicated that the LC50 values of imidacloprid and chlorpyrifos on the susceptible population were determined as 261.2 and 83.03 ppm, respectively. The bioassay with discriminating dose (i.e. LC90 of the susceptible population) showed that all of the tested populations were susceptible to chlorpyrifos. But there were significant differences in susceptibility to imidacloprid between different populations compared to the susceptible one. The highest mortality percentage applying the discriminating dose was obtained for Kondor- susceptible population and the lowest one was related to Jalal-Abad, Zaher Abad and Kondor- resistant populations. The biochemical assays with measuring the esterase activity demonstrated that one of the mechanisms reduce susceptibility was an increase of esterase activity; so that, the activity of the susceptible population was 2.5 times less than that of populations that had low sensitivity. Furthermore, zymogram analysis showed that all populations had 2 enzyme bonds that qualitatively differ in the case of non-sensitive populations compared to the susceptible one. Measurement of glutathione S-transferase activity also showed that this enzyme system was involved in the reduction of the susceptibility of common pistachio psylla to imidacloprid.

کلیدواژه‌ها [English]

  • Agonoscena pistaciae
  • discriminating dose
  • Imidacloprid
  • Chlorpyrifos
  • Detoxify enzyme
Ahmadi, K., Ebadzadeh, H., Hatami, F., Hosseinpour, R. and Abdshah, H. 2018. Agricultural Statistics, Volume 3: Horticultural Products. Ministry of Jihad Agriculture, Deputy of Planning and Economy, Information and Communication Technology Center, pp: 241.
Alizadeh, A., Talebi, K., Hosseininaveh, V. and Ghadamyari, M. 2013. Susceptibility of different populations of common pistachio psyllids Agonoscena pistaciae to pesticides amitrase and imidacloprid in Kerman province. Iranian Journal of Plant Protection Science 44(1): 153-161. (In Farsi)
Alizadeh, A., Talebi, K., Hosseininaveh, V. and Ghadamyari, M. 2011. Metabolic resistance mechanisms tophosalone in the common pistachio psyllid, Agonoscena pistaciae (Hem.: Psyllidae). Pesticide Biochemistry and Physiology 2: 59-64.
Berrada, S., Nguyen, T. X., Lemoine, J., Vanpoucke, J. and Fournier, D. 1995. Thirteen pear species and cultivars evaluated for resistance to Cacopsylla pyri (Homoptera: Psyllidae), Environmental Entomology 24: 1604-1607.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Brewer, M. J. and Trumble, J. T. 1989. Field Monitoring for Insecticide Resistance in Beet Armyworm (Lepidoptera: Noctuidae). Entomological Society of America 82(6): 1520-1526.
Burckhardt, D. and Lauterer, P. 1993. The Jumping Plant-lice of Iran (Homoptera: Psylloidea). Revue Suisse de Zoologie 100(4): 829-898.
Castellanos, N. L., Haddi, K., Carvalho, G. A., Paulo, P.D., Hirose, E., Narciso, R., Guedes, C., Smagghe, and Eugênio, E. O. 2018. Imidacloprid resistance in the Neotropical brown stink bug Euschistus heros: selection and fitness costs, Journal of Pest Science 120: 1-14.
Davis, B. J. 1964. Disc electrophoresis II. Method and application to human serum proteins. Annals of the New York Academy of Sciences 121: 404-427.
Fournier, D. J., Bride, M. Hoffmann, F. and Karch, F. 1992. Acetylcholinesterase. Two types of modifications confer resistance to insecticide. Journal of Biological Chemistry 267 (20): 14270–14274.
Field, L. M., Devonshire, A. L. and Forde, B. G. 1988. Molecular evidence that insecticide     resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Journal of Biochemistry 251: 309-312.
Foster, P. S., Kift, N. B., Baverstock, J., Sime, S., Reynolds, K., Jones, J. E., Thompson, R. and Tatchell, G. M. 2003. Association of MACE-based insecticide resistance in Myzus persicae with reproductive rate, response to alarm pheromone and vulnerability to attack by Aphidius colemani. Pest Management Science 59: 1169-1178.
Gao, J. R., Kyong, S. Y., Richard, K. F., Gerald, C. and Marshall, C. 2005. Esterase-mediated Malathion resistance in the human head louse, Pediculus capitis (Anoplura: Pediculidae). Pesticide Biochemistry and Physiology 42: 17-27.
Grant, D. F. and Matsumura, F. 1988. Glutathione S-transferase-1 in Aedes aegypti larvae. Purification and properties. Insect Biochemistry18: 615-622.
Galaeian, M. 2008. Investigation of live natural control factors of common pistachio psyllids and introduction of dominant species due to population abundance and distribution in Khorasan Razavi province, Khorasan Razavi: Pistachio Research Institute, 85018-7803-05-150000-100. (In Farsi)
Kanga, L. H. B., Eason, J., Haseeb, M., Qureshi, J. and Stansly, P. 2015. Monitoring for insecticide resistance in Asian Citrus Psyllid (Hemiptera: Psyllidae) populations in Florida. Journal of Economic Entomology 12(2): 1-5.
Keita, S. M., Vincent, C., Schmit, J. P. and Belanger, A. 2000. Essential oil composition of Ocimum basilicum L., O. gratissimum L. and O. suave L. in the Republic of Guinea. Flavor and Fragrance Journal 15: 339–341.
Kono, Y. and Tomita, T. 1992. Characteristics of highly active carboxylesterases in insecticide- resistant Culex pipiens quinquefasciatus. Japanese Journal of Sanitary Zoology 43(4): 297-305.
Lababidi, M.S. 2002. Effects of Neem Azal T/S and other insecticides against the pistachio psyllid Agonoscena targionii (Licht.) (Homoptera, Psyllidae) under field conditions in Syria. Journal of Pesticide Science 75: 84-8.
LeOra Software. 2006. POLO-Plus. A user's guide to Probit or Logit analysis. LeOra Software, Berkeley, CA.
Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathione s- transferase, the first step in mercapturic acid formation. Journal of Biology and Chemistry 249: 7130-7139.
Limoee, M., Enayati, A. A., Khassi, K., Salimi, M. and Ladonni, H. 2011. Insecticide resistance and synergism of three field– collected strains of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae) from hospitals in Kermanshah, Iran. Tropical Biomedicine 28: 111-118.
Mehrnejad, M. R. 2010. Potential biological control agents of the common pistachio psylla, Agonoscena pistaciae. Entomofauna 31: 317-340.
Mingjing, Q., Zhaojun, H., Xinjun, X. and Lina, Y. 2003. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pesticide Biochemistry and Physiology 77: 99–105.
Morin, S., Williamson, M. S., Goodson, S. J., Brown, J. K., Tabashnik, B. E. and Dennehy, T. J. 2002. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular and Biology 32: 1781-1791.
Rahim, J.,  Ahmad, A. H.,  Kassim, N. F. A.,  Ahmad, H., Ishak, I. H., Rus, A. C.  and  Maimusa, H. A. 2016. Revised discriminating lethal doses for resistance monitoring program on Aedes albopictus against Temephos and Malathion in Penang Island, Malaysia. Journal of the American Mosquito Control Association 32: 210-216.
Saleem, M., Dilbar, H., Ghouse, G., Muneer, A. and Fisher, S. W. 2015. Monitoring of insecticide resistance in Spodoptera litura (Lepidoptera: Noctuidae) from four districts of Punjab, Pakistan to conventional and new chemistry insecticides. Crop Protection 23(3): 1-8.
Santo Orihuela, P.  L., Vassena C. V., Zerba, E. N. and Picollo M. I. 2008. Relative contribution of monooxygenase and esterase to pyrethroid resistance in Triatoma infestans (Hemiptera: Reduviidae) from Argentina and Bolivia. Journal of Medical Entomology 45: 298-306.
Saur, G. 2005. Efficacy of kaolin particle film and selected synthetic insecticides against pistachio psyllid Agonoscena targionii (Homoptera: Psyllidae) infestation. Crop Protection 24(8): 711-717.
SAS Institute, 2002. SAS/GRAPH Software: Reference Volume 2 Version 8, Cary, NC: SAS Institute Inc.
Scott, J.  G. 1995. The molecular genetics of resistance: resistance as a response to stress. Florida Entomology 78: 399- 414.
Tiwari, S. S., Mann, R. S., Rogers, M. E. and Stelinski, L. 2011. Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Management Science 67: 1258–1268.
Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8: 401-416.
Wang, K. Y., Liu, T. X., Yu, C. H., Jiang, X. Y. and Yi, M. Q. 2002. Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. Journal of Economic Entomology 95: 407-413.
Wang, L., Zhang, Y., Han, Z., Liu, Y. and Fang, I. 2010. Cross-resistance and possible mechanisms of chlorpyrifos resistance in Laodelphax striatellus (Fallén). Pest Management Science 66(10): 1096.
Wu, K. Y., Liu, T. X., Yu, C. H., Jiang, X. Y. and Yi, M. Q. 2009. Purification and partial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera: Liposcelididae). Archives of Insect Biochemistry and Physiology 70(2): 136-50.
Yang, Z., Zhang, Y., Liu, X. and Wang, X. 2017. Two novel cytochrome P450 genes CYP6CS1 and CYP6CW1 from Nilaparvata lugens (Hemiptera: Delphacidae): cDNA cloning and induction by host resistant rice. Pesticide of Biochemical and Physiology 130:79–83.
Yuntao, F., Wu, Q., Wang, S., Chang, X., Xie, W., Xu, B., and Zhang, Y. 2010. Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science 66 (3): 313-318.
Zhang, N., Liu, C. F., Yang, F., Dong, S. I. and Zao, H. 2012. Resistance Mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholine esterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China. Journal of Insect Science 12: 41-56.
Zhang, Y., Yang, Y., Sun, H. and Liu, Z. 2016 Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochemistry and Molecular Biology 79: 50–56.