زیست‌نشان‌گرهای آنزیمی پروانه برگ‌خوارتوت، Glyphodes pyloalis Walker، در تماس با برخی نانومواد مورد کاربرد در فرمولاسیون‌های نوین آفت‌کشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات آفت‌کش‌ها، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 بخش تحقیقات گیاه‌پزشکی، مرکز تحقیقات کشاورزی و منابع طبیعی گلستان، سازمان تحقیقات، آموزش و ترویج کشاورزی،گرگان، ایران

چکیده

فعالیت استرازهای عمومی (ESTs)، کاتالاز (CAT) و گلوتاتیون­اس-­ترانسفراز (GST) پروانه برگ­ خوار توت (Glyphodes pyloalis Walker) برای بررسی واکنش داخل بدن (in vivo) حشره به نانولوله­ های کربنی (CNT) خالص و نانوذرات حاصل از اتصال نانولوله­ های کربنی به دی­اکسید تیتانیوم (CNTs/TiO2-NPs) مورد ارزیابی قرار گرفت. این بررسی­ های بیوشیمیایی طی سه زمان مواجهه (24، 48 و 72 ساعت) با غلظت ­های مختلف این نانوذرات (100، 200، 300، 400 و 500 میلی­ گرم بر لیتر) انجام شد. نتایج نشان داد با به­ کارگیری آلفا-­نفتیل­استات (α-NA) به­ عنوان سوبسترا، افزایش غلظت­های هر دو تیمار (یعنی CNT و CNTs/TiO2-NPs) باعث مختل شدن برگشت­ ناپذیر فعالیت استرازهای عمومی لاروهای سن پنجم این آفت می ­شود. این در­ حالی است که ارزیابی فعالیت آنزیم با به ­کارگیری بتا-­نفتیل­استات (β-NA) به عنوان سوبسترا نشان­ دهنده تاثیر مهار­کنندگی شدیدتر این نانوذرات بر فعالیت آنزیم استراز بود. نتایج هم­چنین نشان داد که بازدارندگی فعالیت آنزیمGST  ناشی از CNT و CNTs/TiO2-NPs وابسته به غلظت تیمارها است. ارزیابی آنزیم CAT نشان داد که افزایش غلظت CNT در طول مدت زمان تماس، باعث افزایش فعالیت این آنزیم در G. pyloalis می­ شود. به رویه مشابه با CNT، افزایش زمان مواجهه و غلظت نانوذرات CNTs/TiO2-NPs باعث افزایش فعالیت آنزیم کاتالاز شد. بنابراین می ­توان نتیجه­ گیری کرد که آنزیم­ های مورد آزمون، شاخص ­های بیوشیمیایی مناسبی به ­منظور پیش­بینی و مدیریت اثرات مخرب CNT خالص و CNTs/TiO2-NPs روی حشرات هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Biochemical biomarkers of lesser mulberry pyralid, Glyphodes pyloalis Walker, in the exposure to some applied nanomaterials in novel pesticide formulations

نویسندگان [English]

  • N. Memarizadeh 1
  • M. Sharifi 2
1 Department of Pesticides Researches, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
2 Plant Protection Research Department, Golestan Agricultural and Natural Resources Research and Education Center, AREEO, Gorgan, Iran
چکیده [English]

The activity of general esterases (ESTs), catalase (CAT) and glutathione S-transferase (GST) were used to survey the in vivo responses of Glyphodes pyloalis Walker to bare carbon nanotubes (CNTs) and synthesized carbon nanotubes/titanium dioxide nanoparticles (CNTs/TiO2-NPs). These biochemical tests were performed in the three time points of exposure (i.e. 24, 48 and 72 h) and to five concentrations (i.e. 100, 200, 300, 400 and 500 ppm). Results showed that the enhancement of treated concentrations of both CNTsand CNTs/TiO2-NPs irreversibly impaired ESTs activities when α- naphthyl acetate (α-NA) used as a substrate. Using β-naphthyl acetate (β-NA) as a substrate, inhibitory effect of both CNTs and CNTs/TiO2-NPs on ESTs activities was more intense than that of α-NA. Results also demonstrated that inhibition of GST activities generating by bare CNTs and also by CNTs/TiO2-NPs was dependent to the concentrations of treatments. CAT assays showed that the increasing CNTs concentrations over exposure time could be affected by enhancement of the CAT activities in G. pyloalis. In the similar manner to bare CNTs, the increasing CNTs when coupled to TiO2-NPs (CNTs/TiO2-NPs) over exposure time could be interfered to the CAT activities. It can be concluded that these tested enzymes are good early biochemical indicators in order to prediction and management of adverse effects of bare CNTs and also CNTs when coupled to TiO2-NPs on insects.

کلیدواژه‌ها [English]

  • Risk assessment
  • nanomaterials
  • CNTs/TiO2-NPs
  • biochemical biomarker
Adana, A., Fen, B., Dergisi, B. and Tunçsoy, B. S. 2018. Toxicity of nanoparticles on insects: A review. Environmental Science and Pollution Research 1(2): 49–61.
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105:121-126.
Aslanturk, A., Kalender, S., Uzunhisarcikli, M. and Kalender, Y. 2011. Effects of methidathion on antioxidant enzyme activities and malonaldehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. Journal of Entomological Research Society 13:27–38.
Bi, M. J., Xue, M., Li, Q. L., Wang, H. T. and Liu, A. H. 2010. Effects of feeding on tobacco plants preinfested by Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype on activities of protective enzymes and digestive enzymes in B. tabaci and Myzuspersicae (Homoptera: Aphididae). Acta Entomology Science 53: 139–146.
Bolter, C. J. and Chefurka, W. 1989. The effect of phosphine treatment on superoxide dismutase, catalase, and peroxidase in the granary weevil, Sitophilus granaries. Pesticide Biochemistry and Physiology 36: 52-60.
Dubovskiy, I. M., Martemyanov, V. V., Vorontsova, Y. L., Rantala, M. J., Gryzanova, E. V. and
Glupov, V. V. 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Biochemistry and Physiology. C Toxicology and Pharmacology 148: 1–5.
Dziewięcka, M., Karpeta-Kaczmarek, J., Augustyniak, M., Majchrzycki, Ł. and Augustyniak-Jabłokow, M. A. 2016. Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. Journal of Hazardous Materials 305:30–40.
Ezemonye, L. and Tongo, I. 2010. Sublethal effects of endosulfan and diazinon pesticides on Glutathione-S-transferase (GST) in various tissue of adult amphibian (Bufore gularis). Chemosphere 81: 214-217.
Foldbjerg, R., Jiang, X., Miclăus, T., Chunying, C., Autrup, H. and Beer, C. 2015. Silver nanoparticles—wolves in sheep’s clothing? Toxicological Research 4: 563–575.
Franco, L., Romero, D., García-Navarro, J. A., Teles, M. and Tvarijonaviciute, A. 2016. Esterase activity (EA), total oxidant status (TOS) and total antioxidant capacity (TAC) in gills of Mytilus galloprovincialis exposed to pollutants: Analytical validation and effects evaluation by single and mixed heavy metal exposure. Marine Pollution Bulletin102(1):30-5.
Garnica-Gutiérrez, R. L., Lara-Martínez, L. A., Palacios, E. Masso F., Contreras, A., Hernández-Gutiérrez, S. and Cervantes-Sod, F. 2018. Effect of functionalized carbon nanotubes and their citric acid polymerization on mesenchymal stem cells in vitro. Journal of Nanomaterials pp: 12.
Gleiter, H. 2000. Nanostructured materials, basic concepts and microstructure. Acta Materialia 48(1): 1-29.
Gooding, J. J., Wibowo, R., Liu, J. Q., Yang, W., Losic, D., Orbons, S., Mearns, F. J., Shapter, J. G. and Hibbert, D. B. 2003. Protein electrochemistry using aligned carbon nanotube arrays. Journal of the American Chemical Society125: 9006-9017.
Gottschalk, F. and Nowack, B. 2011. The release of engineered nanomaterials to the environment. Journal of Environmental Monitoring 13(5): 1145–1155.
Guan H, Chi D, Yu J, Zhang S. Y. 2011. Novel photodegradable insecticide W/TiO2/Avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids and Surfaces B: Biointerfaces 83: 148-154.
Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974.Glutathions-transferase, the first step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–7139.
Hyung, H., Fortner, J. D., Hughes, J. B. and Kim, J. H. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science and Technology 41(1): 179–184.
Ishaaya, I. 1993. Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology22: 263-276.
Jackson P., Jacobsen N. R., Baun A., Birkedal R., Kühnel D., Jensen K. A. and Wallin, H. 2013. Bioaccumulation and ecotoxicity of carbon nanotubes. Chemistry Central Journal 7(1): 1–21.
Jianhui Y, Kelong H, Yuelong W, Suqin L. 2005. Study on anti-pollution nanopreparation of dimethomorph and its performance. Chinese Science Bulletin 50: 108-112.
Kah, M., Weniger, A. K. and Hofmann, T. 2016. Impacts of (Nano)formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environmental Science and Technology 50(20): 10960–10967.
Kaur, A., Sohal, S. K., Arora, S., Kaur, H. and Kaur, A. P. 2014. Effect of plant extracts on biochemistry of Bactrocera Cucurbitae (Coquillett). Journal of Entomology and Zoology Studies 2(3): 86–92.
Kennedy, A. J., Gunter, J. C., Chappell, M. A., Goss, J. D., Hull, M. S., Kirgan, R. A. and Steevens, J. A. 2009. Influence of nanotube preparation in aquatic bioassays. Environmental Toxicology and Chemistry: An International Journal 28(9): 1930–1938.
Key, F. and Maass, G. J. 2008. Ions, atoms and charged particles. Charged Colloids 51(2):12-46.
Koodalingam, A., Mullainadhan, P. and Arumugam, M. 2011. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae).
 
 Acta Tropica 118: 27–36.
Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W. and Li, B. 2014. Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology 40:913–922.
Li, L., Xu, Z., Kah, M., Lin, D. and Filser, J. 2019.Nanopesticides: a comprehensive assessment of environmental risk is needed before widespread agricultural application. Environmental Science and Technology 53(14): 7923–24.
Li, M., Czymmekb, K. J. and Huanga, C. P. 2011. Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. Journal of Hazardous Materials 187: 502- 508.
Li, Z, Gao, B., Chen, G. Z., Mokaya, R., Sotiropoulos, S. and Puma, G. L. 2011. Carbon Nanotube/titanium Dioxide (CNT/TiO2) Core-Shell Nanocomposites with Tailored Shell Thickness, CNT Content and Photocatalytic/photoelectrocatalytic Properties. Applied Catalysis B: Environmental 110:50–57.
Łukasik, I., Goławska, S., and Wójcicka, A. 2009. Antioxidant defense mechanisms of cereal aphids based on ascorbate and ascorbate peroxidase. Biologia 64: 994–998.
Mao, B. H., Chen, Z. Y., Wang, Y. J. and Yan, S. J. 2018. Silver nanoparticles have lethal and sub lethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Scientific Reports 8(1): 2445-2453.
Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. 2014a. Biochemical biomarkers of Glyphodes Pyloalis Walker (Lepidoptera: Pyralidae) in exposure to TiO2 nanoparticles. Invertebrate Survival Journal(ISJ)12: 47–53.
Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. 2014b. Cellular energy allocation of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae): changes related to exposure to TiO2 nanoparticles. Journal of Entomological Society of Iran 33(4): 1-12.
Memarizadeh, N., Ghadamyari, M., Adeli, M. and Talebi, K. 2014c. Linear-dendritic copolymers/ indoxacarb supramolecular systems: biodegradable and efficient nano-pesticides. Environmental Sciences: Process & Impacts 16(10): 2380-2389.
Memarizadeh, N., Ghadamyari, M., Sajedi, R. H. and Jalali, J. 2011. Characterization of esterases from abamectin-resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae). International Journal of Acarology 37(4): 271-281.
Monica, R. C. and Cremonini, R. 2009. Nanoparticles and higher plants. Caryologia 62(2): 161-165.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., Musameh, M., Wang, J., Merkoci, A. and Lin, Y. 2002. Low-potential stable nadhdetection at carbon-nanotube-modified glassy carbon electrodes. Electrochemistry Communications 4: 743-746.
Mudasir, Y. Wibowo, M. and Pranowo, H. D. 2013. Design of new potent insecticides of organophosphate derivatives based on QSAR analysis, Indonesian Journal of Chemistry 13: 86-93.
Sarlak, N., Taherifar, A. and Salehi, F. 2014. Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. Journal of Agricultural and Food Chemistry 62: 4833-4838.
Nguyen, M. T., Nguyen, C. K., Phuong, T. M., Duong, Q. V., Pham, T. L. and Nguyen, T. C. 2014. A study on carbon nanotube titanium dioxide hybrids: experiment and calculation, Advances in Natural Sciences: Nanoscience and Nanotechnology 5: 45018-45025.
Prakash, N., Gopalakrishnan, M., Park, S. Y. and Choi, J. 2011. Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 154(4): 399–408.
Rufingier, C., Pasteur, N., Lagnel, J., Martin, C. and Navajas, M. 1999. Mechanisms of insect resistance in the aphid, Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae), from France. Insect Biochemistry and Molecular Biology 29: 385–391.
SAS Institute (2002), SAS/GRAPH Software: Reference Volume 2 Version 8, Cary, NC: SAS.
 
Sharifi, M., Ghadamyari, M., Sajedi, R. H. and Mahmoodi, N. O. 2015. Effects of 4-hexylresorcinol on the phenoloxidase from Hyphantria cunea (Drury) (Lepidoptera: Arctiidae): in vivo and in vitro studies. Insect Science 10:1-12.
Smirle, M. J., Zurowski, C. L., Lowery, D. T., and Foottit, R. G. 2010.Relationship of insecticide tolerance to esterase enzyme activity in Aphis pomi and Aphis spiraecola. Journal of Economic Entomology 103: 374–378.
Switala, J. and Loewen, P. C. 2002. Diversity of properties among catalases. Archives of Biochemistry and Biophysics 401: 145-154.
Tarigan, S., Dadang, I., and Harahap, S. I. 2016. Toxicological and physiological effects of essential oils against Tribolium castaneum (Coleoptera: Tenebrionidae) and Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Biopesticides 9(2): 135–147.
Teles, M., Fierro-Castroa, C., Na-Phatthalung, P., Tvarijonaviciutec, A., Trindadee, T., Soares, A. M. V. M., Tort, L. and Oliveira, M. 2016.Assessment of gold nanoparticle effects in a marine teleost (Sparus aurata) using molecular and biochemical biomarkers. Aquatic Toxicology 177: 125–35.
Trung, T., Cho, W. J. and Chang S. H. 2003. Preparation of TiO2 Nanoparticles in glycerol-containing solutions. Materials Letters 57(18):2746-50.
Venkataraman, A., Amadi, E. V., Chen, Y. and Papadopoulos, C. 2019. Carbon nanotube assembly and integration for applications. Nanoscale Research Letters 14(1): 1–47.
Wang W, Serp P, Kalck P and Faria J. 2005.Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified Sol-Gel method. Journal of Molecular Catalysis A: Chemical 235: 194-199.
Wang, J. 2005. Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17: 7-14.
Wang, J. Kawde, A. and Mustafa, M. 2003a.Carbon nanotubes modified glassy carbon electrodes for amplified detection of DNA hybridization. Analyst 128: 912-918.
Wang, J. Musameh, M. and Lin, Y. 2003b, Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 125: 2408-2418.
Wheelock, C. E., Shan, G. and Ottea, J. 2005. Overview of carboxylesterase and their role in the metabolism of insecticides. Journal of Pest Science 30: 75–83.
Yacaman, J. M. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353.
Yanagida, M., Numata, Y., Yoshimatsu, K., Satoh, S. and Han, L. 2013. Effective charge collection in dye-sensitized nanocrystalline TiO2. Nanoscience Nanotechnology 4: 1-9.
Zhang, L., Petersen, E. J. and Huang, Q. 2011. Phase distribution of 14C-labeled multi walled carbon nanotubes in aqueous systems containing model solids: Peat. Environmental Science and Technology 45(4): 1356–1362.
Zhao, Q. Gan, Z. and Zhuang, Q. 2002. Electrochemical sensors based on carbon nanotubes. Electroanalysis 14: 1609-1618.
Zhou, C., Yang, H., Wang, Z., Long, G. Y. and Jin, D. C. 2019. Protective and detoxifying enzyme activity and ABCG subfamily gene expression in Sogatella furcifera under insecticide stress. Frontiers in Physiology 9:1-12.