Investigating the efficacy of some botanical and chemical insecticides on first-season sucking pests in cotton fields

Document Type : Research Paper

Authors

1 Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Darab, Iran

2 Department of Agricultural Entomology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

Abstract

The purpose of the current research is treatment of cotton seeds with appropriate pesticides and foliar application with plant compounds in a way that be effective in control of first-season sap sucking pests in cotton fields. This experiment was designed to study the effect of several treatments including: 1-seed treatment with Thiamethoxam (Cruiser®), 2-seed treatment with Thiodicarb (Larvin®), 3-seed treatment with Imidacloprid (Gaucho®), 4-foliar application of insecticidal soap containing coconut oil (Palizin®), 5-foliar application of botanical insecticide containing pepper extract (Tondexir®), 6-foliar application of imidacloprid (Confidor®), and 7-control for control of first-season sap sucking pests in cotton fields. This research was carried out in a randomized complete block design with five replications at Darab Agricultural Research Station during two years (2020 and 2021). Seed treatments with Larvin® and Gaucho® were applied only in the second year of experiment. The results of the first year of the experiment showed that the cotton seed treatment with Cruser® kept the cotton seedlings free from the cotton aphid (Aphis gossypii Glover) until one month after the sowing date compared to other treatments that were applied as foliar spraying. The results of statistical analysis 41 days after sowing date showed that the most effective control method of onion thrips (Thrips tabaci Lindeman) is seed treatment with Cruiser®. The results of the second year of the experiment showed that Cruzer®, Larvin®, and Gaucho®, which were impregnated with cotton seeds, caused a significant decrease in the population density of cotton whitefly nymph [Bemisia tabaci (Gennadius)] until the end of the sampling period (41 days after sowing date). Foliar spraying of seedlings with herbal compounds (Palizin® and Tondexir®) in both years initially had a significant effect on reducing the population of aphids and whiteflies, but with increase of the time, their effect was less than other treatments. Based on the results of the present research, seed treatment with Cruzer® not only offers more control against cotton seedling sucking pests (onion thrips, cotton aphid and cotton whitefly), but also can be a better option in terms of economy, user's health and environmental effects.

Keywords


Aggarwal, N., Jindal, V., & Singh, V. (2010). Comparative efficacy of insecticides against sucking pests complex in transgenic cotton. Pestology, 34(8), 46-49.
Ahmed, S., Nisar, M. S., Shakir, M. M., Imran, M., & Iqbal, K. (2014). Comparative efficacy of some neonicotinoids and traditional insecticides on sucking insect pests and their natural enemies on Bt-121 cotton crop. Journal of Animal and Plant Sciences, 24, 660-663.
Amiri-Besheli, B. (2008). Efficacy of Bacillus thurigiensis, mineral oil, insecticidal emulsion and insecticidal gel against Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Plant Protection Science, 44, 68-73. DOI: https://doi.org/10.17221/531-pps
Amiri-Besheli, B. (2009). Toxicity evaluation of Tracer, Palizin, Sirinol, Runner and Tondexir with and without mineral oils on Phylocnistis citrella Stainton. African Journal of Biotechnology, 8, 3382-3386.
Barari, H. (2016). Study on the efficacy of Cruiser and Gaucho insecticides as seed treatments of oilseed rape to control flea beetles. Plant Protection (Scientific Journal of Agriculture), 38(4), 1-12. DOI: https://doi.org/10.22055/PPR.2015.11389
Berdegue, M., White, K. K., & Trumble, J. T. (1997). Feeding deterrence of Spodoptera exigua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocoumarins. Environmental Entomology, 26, 912-919. DOI: https://doi.org/10.1093/ee/26.4.912
Bowling, R. D., Brewer, M. J., Kerns, D. L., Gordy, J., Seiter, N., Elliott, N. E., Buntin, G. D., Way, M. O., Royer, T. A., & Biles, S. (2016). Sugarcane aphid (Hemiptera: Aphididae): A new pest on sorghum in North America. Journal of Integrated Pest Management, 7(1), 12. DOI: https://doi.org/10.1093/jipm/pmw011
Dhillon, M. K., & Sharma, H. C. (2010). Influence of seed treatment and abiotic factors on damage to Bt and non-Bt cotton genotypes by the serpentine leaf miner Liriomyza trifolii (Diptera: Agromyzidae). International Journal of Tropical Insect Science, 30(3), 127-131. DOI: https://doi.org/10.1017/s1742758410000275
Ding, J., Li, H., Zhang, Z., Lin, J., Liu, F., & Mu, W. (2018). Thiamethoxam, clothianidin, and imidacloprid seed treatments effectively control thrips on corn under field conditions. Journal of Insect Science, 18(6), 19. Doi: https://doi.org/10.1093/jisesa/iey128
Elbert, A., Haas, M., Springer, B., Thielert, W., & Nauen, R. (2008). Applied aspects of neonicotinoid uses in crop protection. Pest Management Science, 64, 1099-1105. DOI: https://doi.org/10.1002/ps.1616
El-Hamady, S. E., Kubiak, R., & Derbalah, A. S. (2008). Fate of imidacloprid in soil and plant after application to cotton seeds. Chemosphere, 71, 2173-2179. DOI: https://doi.org/10.1016/j.chemosphere.2007.12.027
Ester, A., De Putter, H., & Van Bilsen, J. G. P. M. (2003). Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests. Crop Protection, 22, 761–768. DOI: https://doi.org/10.1016/s0261-2194(03)00042-5
Ghosal, A., Chatterjee, M. L., & Bhattacharyya, A. (2013). Bio-efficacy of neonicotinoids against Aphis gossypii Glover of okra. Journal of Crop and Weed, 9(2), 181-184.
Gopal, M., Mukherjee, I., & Chander, S. (2002). Behaviour of β-cyfluthrin and imidacloprid in mustard crop: alternative insecticide for aphid control. Bulletin of Environmental Contamination and Toxicology, 68, 406-411. DOI: https://doi.org/10.1007/s00128-001-0269-6
Halmer, P. (2000). Commercial seed treatment technology. In: Seed technology and biological basis, By: Black, M. and Bewely, J. D. (Eds.), pp:257-286. CRC Press.
Huang, F., Hao, Z., & Yan, F. (2019). Influence of oilseed rape seed treatment with imidacloprid on survival, feeding behavior, and detoxifying enzymes of mustard aphid, Lipaphis erysimiInsects,10(5), 144. DOI: https://doi.org/10.3390/insects10050144
Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603-608. DOI: https://doi.org/10.1016/s0261-2194(00)00079-x
Jones, N., Brown, S., Williams, S., Emfinger, K., & Kerns, D. (2015). Efficacy of neonicotinoid seed treatments against sugarcane aphid in grain sorghum. Arthropod Management Tests, 40(1), 1-2. DOI: https://doi.org/10.1093/amt/tsv139
Kumar, K., & Santharam, G. (2000). Effect of storage on imidacloprid-treated cotton seeds against aphids, Aphis gossypii (Glov.). International Journal of Tropical Agriculture, 18, 335–342.
Kumar, S., Bhatnagar, A., Kumar, M., Singh, U., & Kumar, A. (2019). Efficacy of insecticides as seed treatment against whitefly, Bemisia tabaci (Genn.) on Potato, Solanum tuberosum L. Annals of Plant Protection Sciences, 27(2), 177-180. DOI: https://doi.org/10.5958/0974-0163.2019.00036.3
Li, Y. F., An, J. J., Dang, Z. H., Pan, W. L., & Gao, Z. L. (2018). Systemic control efficacy of neonicotinoids seeds dressing on English grain aphid (Hemiptera: Aphididae). Journal of Asia-Pacific Entomology, 21(1), 430-435. DOI: https://doi.org/10.1016/j.aspen.2018.01.003
McCornack, B. P., & Ragsdale, D. W. (2006). Efficacy of thiamethoxam to suppress soybean aphid populations in Minnesota soybean. Crop Management, 5(1), 1-8. DOI: https://doi.org/10.1094/cm-2006-0915-01-rs
Nauen, R. (1995). Behavior modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Journal of Pesticide Science, 44, 145–153. DOI: https://doi.org/10.1002/ps.2780440207
Nault, B, Taylor, A., Urwikler, A. G., Rabaey, M., & Hutchison, W. D. (2004). Neonicotinoid seed treatments for managing potato leafhopper infestations in snap bean. Crop Protection, 23, 147-154. DOI: https://doi.org/10.1016/j.cropro.2003.08.002
Pathania, M., Arora, P. K., Pathania, S., & Kumar, A. (2019). Studies on population dynamics and management of pomegranate aphid, Aphis punicae Passerini (Hemiptera: Aphididae) on pomegranate under semi-arid conditions of South-western Punjab. Scientia Horticulturae, 243, 300-306. DOI: https://doi.org/10.1016/j.scienta.2018.07.027
Patil, S. B., Udikeri, S. S., & Khadi, B. M. (2004). Thiamethoxam 35 FS – A new seed dresser formulation for sucking pest control in cotton crop. Pestology, 28, 34-37.
Reisig, D. D., Herbert, D. A., & Malone, S. (2012). Impact of neonicotinoid seed treatments on thrips (Thysanoptera: Thripidae) and soybean yield in Virginia and North Carolina. Journal of economic entomology, 105(3), 884–889. DOI: https://doi.org/10.1603/ec11429
Royer, T. A., Giles, K. L., Nyamanzi, T., Hunger, R. M., Krenzer, E. G., Elliot, N. C., Kindler, S. D., & Payton, M. (2005). Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. Journal of Economic Entomology, 98, 95-102. DOI: https://doi.org/10.1093/jee/98.1.95
Sarkar, P. K., & Maity, L. (2017). Positioning thiamethoxam 70 WS seed treatment towards sustainable management of sucking insect pest complex of sunflower. Environment and Ecology, 35, 1941-1947. DOI: https://www.cabdirect.org/cabdirect/abstract/20173244183
Setamou, M., Rodriguez, D., Saldana, R., Schwarzlose, G., Palrang, D., & Nelson, S. D. (2010). Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. Journal of Economic Entomology, 103, 1711-1719. DOI: https://doi.org/10.1603/ec09371
Stamm, M. D., Heng-Moss, T. M., Baxendale, F. P., Reese, J. C., Siegfried, B. D., Hunt, T. E., & Blankenship, E. E. (2013). Effects of thiamethoxam seed treatments on soybean aphid (Hemiptera: Aphididae) feeding behavior. Journal of Economic Entomology, 106(6), 2384-2390. DOI: https://doi.org/10.1603/ec13268
Szczepaniec, A. (2018). Interactive effects of crop variety, insecticide seed treatment, and planting date on population dynamics of sugarcane aphid (Melanaphis sacchari) and their predators in late-colonized sorghum. Crop Protection109, 72-79. DOI: https://doi.org/10.1016/j.cropro.2018.03.002
Tillman, P. G., & Mulrooney, J. E. (2000). Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology, 93, 1638-1643. DOI: https://doi.org/10.1603/0022-0493-93.6.1638
Triboni, Y. B., Del Bem, L., Raetano, C. G., & Negrisoli, M. M. (2019). Effect of seed treatment with insecticides on the control of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in soybean. Arquivos do Instituto Biológico86. DOI: https://doi.org/10.1590/1808-1657000332018
Udikeri, S. S., Patil, S. B., Naik, L. K., Rachappa, V., Nimbal, F., & Guruprasad, G. S. (2007). Poncho 600 FS-a new seed dressing formulation for sucking pest management in cotton. Karnataka Journal of Agricultural Sciences, 20(1), 51. DOI: http://14.139.155.167/test5/index.php/kjas/article/view/954/947
Vastrad, A. S. (2003). Neonicotinoids-Current success and future outlook. Pestology, 27, 60-63.
Weichel, L., & Nauen, R. (2004). Uptake, translocation and bioavailability of imidacloprid in several hop varieties. Pest Management Science, 60, 440–446. DOI: https://doi.org/10.1002/ps.831
Yee, W. L., & Toscano, N. C. (1998). Laboratory evaluations of synthetic and natural insecticides on beet armyworm (Lepidoptera: Noctuidae) damage and survival on lettuce. Journal of Economic Entomology, 91, 56-63. DOI: https://doi.org/10.1093/jee/91.1.56
Zhang, A., Zhu, L., Shi, Z., Liu, T., Han, L., & Zhao, K. (2021). Effects of imidacloprid and thiamethoxam on the development and reproduction of the soybean aphid Aphis glycinesPloS One, 16(9), e0250311. DOI: https://doi.org/10.1371/journal.pone.0250311
Zhang, L., Greenberg, S. M., Zhang, Y., & Liu, T.X. (2011). Effectiveness of thiamethoxam and imidacloprid seed treatments against Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. Pest Management Science, 67(2), 226–232. DOI: https://doi.org/10.1002/ps.2056
Zhang, P., Zhang, X., Zhao, Y., Wei, Y., Mu, W., & Liu, F. (2015). Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat. Pest Management Science, 72, 1141–1149. DOI: https://doi.org/10.1002/ps.4090
Zhao, H., Xie, C., & Liu, F. (2014). Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Protection, 60, 78–82. DOI: https://doi.org/10.1016/j.cropro.2014.02.009