Efficacy of the parasitoid wasp, Habrobracon hebetor in integrating with Matrine and Bacillus thuringiensis in the control of Anagasta kuehniella

Document Type : Research Paper

Authors

1 Department of Plant Protection, Urmia University, Urmia, Iran,

2 Department of Plant Protection, Urmia University, Urmia, Iran

3 Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran

4 Department of Entomology, Kansas State University, Agricultural Research Center-Hays. USA

Abstract

In this research, the efficiency of the parasitoid wasp, Habrobracon hebetor (Say) in integrated with Matrine and Bacillus thuringiensis (Berliner) subsp. Kurstaki (Btk) against Anagasta kuehniella (Zeller), was investigated. Lethal and sublethal concentrations (LC30) of Matrine and Btk were determined by bioassay method on host larvae. To evaluate the preference of the host larval instars by the parasitoid, different larval instars were provided for parasitoid and the rate of parasitism was determined. The fourth and the fifth instar larvae of the host were treated with sublethal concentrations of Matrine and Btk then were provided for parasitoid in choice and non- choice conditions. The rate of paralysis, parasitism, egg-laying, emergence percentage and sex ratio of release wasps were determined. The results showed that female parasitoid preferred the fourth and fifth instar larvae of the host for parasitism. In the choice test, Matrine-treated larvae were more preferred by female parasitoid while in non-choice test, the highest amount of parasitism and egg-laying was related to the control treatment. The emergence percentage of adult wasps and their sex ratio (Female/Total), obtained from Matrine-treated fourth and fifth instar larvae, were 61 and 54% in the choice and 61 and 54% in the non-choice tests. The results showed that Matrine and Btk have significant potential in controlling of A. kuehniella. However, due to the sublethal adverse effects of these control agents on the efficiency of the parasitoid, simultaneous use of them with the parasitoid wasp, H. hebetor is not recommended.

Keywords


Abbas, M. S. T. (2020). Interactions between Bacillus thuringiensis and entomophagous insects. Egyptian Journal of Biological Pest Control, 30 (51), 2-9. DOI:https://doi.org/10.1186/s41938-020-00255-8.
Abedi, Z., Saber, M., Gharekhani, G. H., Mehrvar, A., & Kamita, S. G. (2014). Lethal and Sublethal Effects of Azadirachtin and Cypermethrin on Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Economic Entomology, 107(2), 638-645. DOI: http://doi.org/10.1603/EC13227.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. DOI:https://doi.org/10.1093/jee/18.2.265a.
Adly, D., & Marzouk, W. M. (2019). Efficacy of the larval parasitoid, Bracon hebetor Say. (Hymenoptera: Braconidae) on the greater wax moth larvae, Galleria mellonella (L.) (Lepidoptera: Pyralidae) under laboratory and field conditions. Egyptian Journal of Biological Pest Control, 29(87), 1-7. DOI:https://doi.org/10.1186/s41938-019-0193-x.
Ahmad, S., Ansari, M. S., & Moraiet, M. A. (2013). Demographic changes in Helicoverpa armigera after exposure to neem/azal (1% EC azadirachtin). Crop Protection, 50, 30-36. DOI:https://doi.org/10.1016/j.cropro.2013.03.012.
Ahmad, S., Ansari, M. S., & Muslim, M. (2015). Toxic effects of neem based insecticides on the fitness of Helicoverpa armigera (Hübner). Corp Protection, 68, 72-78. DOI:http://doi.org/10.1016/j.cropro.2014.11.003.
Ali, S., Zhang, C., Wang, Z., Wang, X., Wu, J., Cuthbertson, A. G. S., Shao, Z., & Qiu, B.  (2017). Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Scientific Reports, 7, 46558. DOI:https://doi.org/10.1038/srep46558.
Allahyari, R., Aramideh, Sh., Michaud, J. P., Safaralizadeh, M. H., & Rezapanah, R. (2020a). Negative life history impacts for Habrobracon hebetor (Hymneoptera: Braconidae) that develop in bollworm larvae inoculated with Helicoverpa armigera Nucleopolyhedrovirus. Journal of Economic Entomology, 113(4), 1648-1655. DOI: https://doi.org/10.1093/jee/toaa066.
Allahyari, R., Aramideh, Sh., Michaud, J. P., Safaralizadeh, M. H., & Rezapanah, R. (2020b). Behavioral and developmental responses of Habrobracon hebetor (Hymenoptera: Braconidae) to larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) inoculated with various concentrations of Bacillus thuringiensis var. kurstaki (Bacillales: Bacillacae). Journal of Insect Science, 20(6), 1-6. DOI: https://doi.org/10.1093/jisesa/ieaa129.
Amirfanak, V., Safavi, S. A., & Forouzan, M. (2023). Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the matrine. Plant Protection (Scientific Journal of Agriculture), 45(4), 19-35. (In Farsi). DOI:https://org/10.22055/ppr.2022.17991.
Ba, N. M., Baoua, I. B., Kabore, A., Amadou, L., Oumarou, N., Dabire-Binso, C., & Sanon, A. (2014). Augmentative on-farm delivery methods for the parasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae) to control the millet head miner, Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae), in Burkina Faso and Niger. BioControl, 59, 689-696. DOI: https://doi.org/10.1007/s10526-014-9613-8.
Bahmani, N., Latifian, M., Ostovan, H., & Hesami, Sh. (2020). Pathogenic effects of Beauveria bassiana and Bacillus thuringiensis on the population dynamics of Ephestia kuehniella. Egyptian Journal of Biological Pest Control, 30, 94. DOI:https://doi.org/10.1186/s41938-020-00285-2.
Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems. Biological Control, 140, 104095. DOI: https://doi.org/10.1016/j.biocontrol.2019.104095.
Bayram, A., Salerno, G., Onofri, A., & Conti, E. (2010). Lethal and sublethal effects of preimaginal treatments with two pyrethroids on the life history of the egg parasitoid Telenomus busseolae. BioControl, 55(6), 697-710. DOI: https://doi.org/10.1007/s10526-010-9288-8.
Bernardi, D., Botton, M., Cunha, U. S., Bernardi, O., Malausa, T., Garcia, M. S., & Nava, D. E. (2013). Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Management Science, 69(1), 75-80. DOI: https://doi.org/10.1002/ps.3364.
Blumberg, D., Navon, A., Keren, S., Goldenberg, A., & Ferkovich, M. (1997). Interactions among Helicoverpa armigera (Lepidoptera: Noctuidae), its larval endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae), and Bacillus thuringiensis. Journal of Economic Entomology, 90, 1181-1186. DOI:https://doi.org/10.1093/jee/90.5.1181.
Cheng, X., Ye, J., He, H., Liu, Z., Xu, C., Wu, B., Xiong, X., Shu, X., Jiang, X., & Qin, X. (2018). Synthesis, characterization and in vitro biological evaluation of two matrine derivatives. Scientific Reports, 8(1), 15686. DOI: https://doi.org/10.1038/s41598-018-33908-8.
Fang, X. D., Ouyang, G. C., Lu, H. L., Guo, M. F., & Wu, W. N. (2017). Ecological control of citrus pests primarily using predatory mites and the biorational pesticide matrine. International Journal of Pest Management, 64(3), 262-270. DOI: https://doi.org/10.1080/09670874.2017.1394507 
Farag, M. M. A., Ahmed, S. S., & El-Husseini, M. M. (2012). Life history of Habrobracon hebetor Say (Hymenoptera: Braconidae) parasitizing Cadra (Ephestia) cautella (Walker) (Lepidoptera: Pyralidae) on dried date fruits. Egyptian Journal of Biological Pest Control, 22(1), 73-77.
Finney, D. J. (1971). Probit analysis, 3rd ed. Cambridge University Press, Cambridge, UK, 333 pp.
Ghimire, M. N., & Phillips, T. W. (2014). Oviposition and reproductive performance of Habrobracon hebetor (Hymenoptera: Braconidae) on six different pyralid host species. Annals of the Entomological Society of America, 107, 809-817. DOI:https://doi.org/10.1603/AN14046.
Ghosh, E., Varshney, R., & Varshney, R. (2022). Performance of larval parasitoid, on two Spodoptera hosts: implication in bio-control of Spodoptera frugiperda. Journal of Pest Science95, 435-446. DOI: https://doi.org/10.1007/s10340-021-01385-0.
Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010) A meta-analysis of preference relationships in phytophagous insects. Ecology Letters, 13, 383–393. DOI: https://doi.org/10.1111/j.1461-0248.2009.01433. x.
Heimpel, G. E., & Mills, N. (2017). Biological Control- Ecology and Applications. Cambridge University Press. 380 p. DOI:https:// org/10.1017/9781139029117.
Hoddle, M. S., & van Driesche, R. G. (2009). Biological control of insect pests. In: Resh, V.H., Cardé, R.T. (Eds.), Encyclopedia of Insects, second ed. Academic Press, San Diego, 91–100. DOI:https:// org/10.1016/B978-0-12-374144-8.00148-X.
Ibargutxi, M. A., Munoz D., Escudero I. R., & Caballero, P. (2008). Interactions between Cry1Ac, Cry2Ab, and Cry1Fa Bacillus thuringiensis toxins in the cotton pests Helicoverpa armigera (Hu¨ bner) and Earias insulana (Boisduval). Biological Control, 47(1), 89-96. DOI: https://doi.org/10.1016/j.biocontrol.2008.07.003.
Kabore, A., Ba, N. M., Dabire-Binso, C. L., & Sanon, A. (2017). Field persistence of Habrobracon hebetor (Say) (Hymenoptera: Braconidae) following augmentative releases against the millet head miner, Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae), in the Sahel. Biological Control, 108, 64-69. DOI:https://doi.org/10.1016/j.biocontrol.2017.03.001.
Khan, M. A., & Ruberson, J. R. (2017). Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Management Science, 73(12), 2465-2472. DOI: https://doi.org/10.1002/ps.4639. 
Kordestani, M., Mahdian, K., Baniameri, V., & Garjan, A. S. H. (2021). Lethal and sublethal effects of proteus, matrine, and pyridayl on Frankliella occidentalis (Thysanoptera: Thripidae). Environmental Entomology, 50(2), 1137-1144. DOI:https://doi.org/10.1093/ee/nvab071.
Kordestani, M., Mahdian, K., Baniameri, V., & Garjan, A. S. H. (2022). Proteus, matrine, and pyridalyl toxicity and their sublethal effects on Orius laevigatus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 115(2), 573-581. DOI:https://doi.org/10.1093/jee/toab267.
Mbata, G. N., & Warsi, S. (2019). Habrobracon hebetor and Pteromalus cerealellae as tools in post-harvest integrated pest management. Insects, 10, 2–12. DOI: https://doi.org/10.3390/insects10040085.
Nofemela, R. S., & Kfir, R. (2007). Diadegma mollipla parasitizing Plutella xylostella: host instar preference and suitability. Entomologia Experimentalis et Applicata, 126(1), 9-17. DOI: https://doi.org/10.1111/j.1570-7458.2007.00632.x. 
Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z., & Kamita, S. G. (2016). Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia Interpunctella Hubner (Lepidoptera: Pyralidae). Journal of Insect Science, 16(1), 95, 1–8. DOI: https://doi.org/10.1093/jisesa/iew086.
Oluwafemi, A. R., Qiong Rao, Q., Wang, X., & Zhang, H. (2009). Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Science, 16, 409-416. DOI:https://doi.org/10.1111/j.1744-7917.2009.01262. x.
Pizzol, J., Desneux, N., Wajnberg, E., & Thiéry, D. (2012). Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. Journal of Pest Science, 85(4), 489-496. DOI:https://doi.org/10.1007/s10340-012-0434-1. 
Rezaei, M., Hesami, Sh., Gheibi, M., & Zohdi, H. (2019). Effect of lethal and sublethal concentrations of three insecticides on some growth parameters of parasitoid wasp, Habrobracon hebetor by contact and poisonous-host method. Journal of Plant protection, 33(2), 159-170. DOI: https://doi.org/10.22067/jpp.v33i2.77262.
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. )2007(. Bioassays with arthropods. Boca Raton, CRC Press. 199 pp. (2nd ed.). CRC Press. DOI: https://doi.org/10.1201/9781420004045.
Saber, M. (2011). Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology, 20(6), 1476-1484. DOI:https://doi.org/10.1007/s10646-011-0704-3. 
Shams-Salehi, S., Rajabpour, A., Rasekh, A., & Farkhari, M. (2016). Repellency and some biological effects of different ultrasonic waves on Mediterranean flour moth, Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 69, 14-21. DOI:https://doi.org/10.1016/j.jspr.2016.05.002.
Singh, D., Singh, R. P., & Tripathi, C. P. M. (2016). Effect of host density on life table statistics of Bracon hebetor Say, 1836 (Hymenoptera: Braconidae). Tropical Zoology, 29(1), 44-51. DOI:https://doi.org/10.1080/03946975.2016.1145399.
Stecca, C. S., Bueno, A. F., Pasini, A., Silva, D. M., Andrade, K., & Zirondi Filho, D. M. (2017). Impact of insecticides used in soybean crops to the egg parasitoid Telenomus podisi (Hymenoptera: Platygastridae). Neotropical Entomology, 47(2), 281-291. DOI: https://doi.org/10.1007/s13744-017-0552-9.
Taffar, A., Yeliz-touiker, S., Bendjedid, H., & Soltani, N. (2021). Evaluation of azadirachtin, a biopesticides, on growth, development and cuticle secretion of Mediterranean flour moth, Ephestia kuehniella Zeller. Journal of Entomological Research, 45(3), 436-443. DOI: https://doi.org/10.5958/0974-4576.2021.00068.2.
Torfi, E. T., Rasekh, A., Mossadegh, M. S., & Rajabpoor, A. (2019). Host stage preference of Aenasius bambawalei (Hymenoptera: Encyrtidae), the parasitoid of cotton mealy bug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae), under choice and no-choice access. Journal of Entomological Society of Iran, 39 (3), 241-254. (In Farsi). DOI: https://doi.org/10.22117/jesi.2019.126717.1314.
Tran, D. H., Takagi, M., & Takasu, K. (2004). Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leaf miner. Applied Entomology and Zoology, 39(3), 435-441. DOI: https://doi.org/10.1303/aez.2004.435.
Wan, N. F., Yang, J. H., Zhang, J. Y., Wang, Y. J., Chen, X., Ji, Y., & Jiang, J. X. (2019). Prior experiences of endoparasitoids affect their ability to discriminate NPV-infected from non-infected caterpillars. Biological Control, 128, 64-75. DOI:https://doi.org/10.1016/j.biocontrol.2018.09.013.
Wei, D., Yao, L., Jun, Z., Lin-quan, G., Guo-qing, Y., & Fang, L. (2019). Selectivity and sublethal effects of some frequently-used biopesticides on the predator Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). Journal of Integrative Agriculture, 18(1), 124-133. DOI:https://doi.org/10.1016/S2095-3119(17)61845-8.
Wu, J., Yu, X., Wang, X., Tang, L., & Ali, S. (2019). Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 10, 1812. DOI:https://doi.org/10.3389/fmicb.2019.01812.
Yan, S., Hu, Q., Li, J., Chao, Z., Cai, C., Yin, M., Du, X., & Shen, J. (2019). A star polycation acts as drug nanocarrier to improve the toxicity and persistance of botanical pesticides. ACS Sustainable Chemistry & Engineering, 7, 17406-17413. DOI: https://doi.org/10.1021/acssuschemeng.9b04567.
Yuan, J., Lu, L. Z., & Cong, B. (2004).  Biological activity of alkaloids from Sophora flavescens Ait to pests. Pesticides, 16, 284-287. DOI:https://doi.org/10.1080/14786419.2010.533665.
Zanardi, O. Z., Ribeiro, L. P., Ansante, T. F., Santos, M. S., Bordini, G. P., Yamamoto, P. T., & Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67, 160-167. DOI:https://doi.org/10.1016/j.cropro.2014.10.010.