Enhanced activity of esterases and glutathion-s-transferases in abamectin resistant populations of Panonychus citri (Acari: Tetranychidae)

Document Type : Research Paper

Authors

1 Department of Plant Protection, College of Agricultural Sciences, University of Guilan, Rasht, Iran

2 Department of Plant Protection, College of Agriculture, Isfahan University of Technology

Abstract

Citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae) is one of the most important pest of citrus in the citrus regions of the world and Northern provinces of Iran. Application of various chemical pesticides against citrus pests has destroyed natural enemies, the occurrence of resistance and the resurgence of the pests. In this research, resistance mechanisms of citrus red mite to abamectin were investigated in four populations. To determine the LC50, the spray potter tower method was used. In this method, the resistance level in Gorgan, Ramsar, and Sari populations was 6.48, 6.19 and 5.11 times higher than the susceptible population. The measurement of esterase activity in Gorgan's resistant population using α-naphthyl acetate and β-naphthyl acetate substrate was 7.960 and 3.575 times more than that of the susceptible population. Estimation of kinetic parameters and glutathione-s-transferase activity level using 1-chloro-2,4-dinitrobenzene (CDNB) as substrate also showed a significant difference between the four populations, so that the activity of this enzyme in resistance population was 2.79 fold higher than that of resistant population. Also, Km and Vmax in resistant population were 16.12 and 5.33 fold than susceptible population, respectively. Due to the increasing trend of resistance, the results of this study indicated the role of esterase and glutathione-s-transferase enzymes in resistance mechanism to abamectin.

Keywords


Arbabi, M., Asadi, Y., Mirhosseini, M. R. and Zaghi, A. 1999. Acaricide activity of fenpyroximate against citrus red mite in Mazandaran province. National Congress of Fertilizer and pesticide in Agriculture 56 p. (In Farsi).
Arbabi, M. 2005. The results of one-decade research of acaricides on mites causing damage in Iran. The First National Conference of the Half a Century of Use of Chemical Industry and Plant Pesticides. 12-16 June. Iran 61-67 pp. (In Farsi)
Anonymous, A. 1986. Compounding polysulfide for resistance to biodegradation, Thiokol Chemicals Limited, Coventry, United Kingdom. From Web http://books.google.com/books?id=rcfbAAAA QBAJ&pg= PA89&lpg=PA89&dq= anonymous+1986.
Bloomquist, J. R. 1993. Toxicology, mode of action, and target-site mediated resistance to insecticides acting on chloride channels. Comparative Biochemistry and Physiology 106(2): 301-314.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
Cagatay, N. S., Menault, P., Riga, M., Vontas, J. and Ay, R. 2018. Identification and characterization of abamectin resistance in Tetranychus urticae Koch populations from greenhouses in Turkey. Crop Protection 112: 112-117.
Davis, B. J. 1964. Disc electrophoresis II. Method and application to human serum proteins. Annals of the New York Academy of Science 121: 404-427.
Dermauw, W., Ilias, A., Riga, M., Tsagkarakou, A., Grbc, M. and Tirry, L. 2012. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance, Insect Biochemistry and Molecular Biology 42: 455-465.
Ding, T. B., Niu, J. Z., Yang, L. H., Zhang, K., Dou, W. and Wang, J. J. 2013. Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri. Pesticide Biochemistry and Physiology 106: 28-37.
Fragoso, D. B., Narciso, R., Guedes, C., Goreti, M. and Oliveira, A. 2007. Partial characterization of glutathione S-transferases in pyrethroid- resistant and susceptible populations of the maize weevil, Sitophilus zeamais. Journal of Stored Products Research43: 167-170.
Gotoh, T., Ishikawa, Y. and Kitashima, Y. 2003. Life-history traits of the six Panonychus species from Japan (Acari: Tetranychidae). Experimental and Applied Acarology 29(3-4): 241-252.
Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130-7139.
Jones, V. P. and Parrella, M. P. 1984. The sublethal effects of selected insecticides on life table parameters of Panonychus citri (Acari, Tetranychidae). Canadian Entomologist 116: 1033-1040.
Konanz, S. and Nauen, R. 2004. Purification and partial characterization of a glutathione S-transferase from the two-spotted spider mite, Tetranychus urticae. Pesticide Biochemistry and Physiology 79: 49-57.
Kono, Y. and Tomita, T. 1992. Characteristics of highly active carboxylesterases in insecticide-resistant Culex pipiens quinquefasciatus. Japanese Journal of Sanitary Zoology 43 (4): 297-305.
Liao, C. Y. W. K., Xia, Y. C., Feng, G., Li, H., Liu, W., Dou, J. and Wang, J. 2016.Characterization and functional analysis of a novel glutathione S-transferase gene potentially associated with the abamectin resistance in Panonychus citri (McGregor). Pesticide Biochemistry and Physiology 132: 72-80.
Memarizadeh, N., Ghadamyari, M., Sajedi, R. H., Jalali Sendi, J. 2011a. Characterization of esterases from abamectin-resistant and susceptible strains of Tetranychus urticae Koch (Acari: Tetranychidae). International Journal of Acarology37(4): 271–281.
Memarizadeh, N., Ghadamyaria, M., Sajedi, R. H. and Jalali Sendi, J. 2011b. Mechanism of resistance of Tetranychus urticae Koch (Acari: Tetranychidae) to abamectin. Iranian Journal of Plant Protection Science 42(1): 75-83. (In Farsi)
Metcalf, R. L. 1980. Changing role of insecticides in crop protection. Annual Review of Entomology 25: 219-256.
Mosallanejad, H., Noroozian, M. and Mohamadbeigi, A. 2002. A guide booklet of important crop pests, diseases and weeds and the recommended control chemicals. Crop Protection Organization 110 pp. (In Farsi).
Migeon, A. and Dorkeld, F. 2010. From Spider Mites Web: http: //www.montpellier.inra.fr/CBGP/ spmweb.
Niu, J. Z., Liu, G. Y., Dou, W. and Wang, J. J. 2011. Susceptibility and activity of glutathione S-transferases in nine field populations of Panonychus citri (Acari: Tetranychidae) to pyridaben and azocyclotin. Folia Entomologica Hungarica 94: 321-329.
Pavlidi, N., Tseliou, V., Riga, M., Nauen, R., van Leeuwen, T., Labrou, N. and Vontas, J. 2015. Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. Pesticide Biochemistry and Physiology 121: 53–60.
Pan, W. G., Luo, P., Fu, R. B., Gao, P., Long, Z. F., Xu, F. Y., Xiao, H. B. and Liu, S. G. 2006. Acaricidal activity against Panonychus citri of a ginkgolic acid from the external seed coat of Ginkgo biloba. Pest ManagementScience 62(3): 283-287.
Ran, C., Chen Y. and Wang, J. J. 2009. Susceptibility and carboxylesterase activity of five field populations of Panonychus citri (McGregor) (Acari: Tetranychidae) to four acaricides. InternationalJournal of Acarology 35: 115-121.
Sato, M. E., Silva, M. Z. D., Raga, A. and Raga, F. D. S. 2005.Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotropical Entomology 34(6): 991-998.
SAS 9.1.3. 2002. SAS Institute Inc., Cary, NC, USA.
Shen, X. M., Zhong, R., Xia, W. K., Wei, D., Ding, T. B., Liao, C. Y., Niu, J. Z., Dou, W. and Wang, J. J. 2017. Identification of responsive proteins in Panonychus citri exposed to abamectin by a proteomic approach. Journal of Proteomics 158: 9-19.
Stumpf, N. and Nauen, R. 2002. Biochemical Markers Linked to Abamectin Resistance in Tetranychus urticae (Acari: Tetranychidae). Pesticide Biochemistry and Physiology 72: 111–121.
Takeyama, K., Mori, N. and Osakabe, M. 2006. Effect of cytochrome P450 inhibitor, piperonyl butoxide, on survival of Panonychus citri (McGregor) (Acari: Tetranychidae) on citrus leaves. Applied Entomology and Zoology 41: 487-491.
Tsagkarakou, A., van Leeuwen, T., Khajehali, J., Ilias, A., Grispou, M., Williamson, S., Tirry, L. and Vontas, J. 2009. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Insect Molecular Biology 18(5): 583-593.
Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journalof Insect Physiology8: 401-416.
Van Leeuwen, T., Vontas, J., Tsagkarakou, A. and Tirry, L. 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In Ishaaya, I. and Horowitz, A. R. (Eds.). Biorational Control of Arthropod Pests Springer, Dordrecht pp. 347-393.
 
Vassiliou, V. A. and Kitsis P. 2013. Acaricide resistance in Tetranychus urticae (Acari: Tetranychidae) populations from Cyprus. Journal of Economic Entomology 106(4): 1848-1854.
Vassiliou, V. A. and Papadoulis, G. 2009. First record of the citrus red mite Panonychus citri in Cyprus. Phytoparasitica 37(1): 99-100.
Zhang, K., Niu, J. Z., Ding, T. B., Dou, W. and Wang, J. J. 2013. Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari: Tetranychidae). Archives of Insect Biochemistry and Physiology 82 (4): 213-226.