Microencapsulation of Pseudomonas fluorescens bacteria with silica/zinc oxide nanoparticles and its effect on tomato and some biological parametrs of Tuta absoluta

Document Type : Research Paper

Authors

Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Iran

Abstract

Using microcapsulation in formulation of biological agents such as antagositic bacteria plays an important role in increasing the efficiency and stability of these agents in the adverse environmental conditions. In the present study, the effect of encapsulation of Pseudomonas fluorescens VUPF5 bacteria with alginate-whey protein and silica and zinc oxide nanoparticles was investigated on some important elements of the tomato plant, the number of eggs, oviposition period and the Longevity of the tomato moth Tuta absoluta Meyrick (Lepidoptera: Gelechidae). Greenhouse experiments were carried out at 27±2 °C, relative humidity of 60±5% and photoperiod of 16:8 h light:dark. The amount of some importatnt nutrients in tomato plant were measured in four treatments including: 1) plant treated with capsulated bacteria, 2) plant treated with zinc oxide + silica nanoparticles, 3) plant treated with uncoated bacteria, and 4) plant treated with water + alginate + whey protein (control). The results indicated that treatment of the plants with the capsulated bacteria caused an increase of  10.2, 13.8 and 1.6 times the amount of phosphorus, potassium and iron elements respectively compared to control plants, Moreover, length of the adult pre-oviposition period (APOP), the total pre-oviposition period (TPOP), and the Longevity were longer in the insects were fed on the plants treated with the capsulated bacteria. But, the number of eggs were fewer compared with insects fed on the control plants. The results showed that the bacteria improved plant growth and increased its resistance against T. absoluta.

Keywords


Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research163(2), 173-181. DOI:https://doi.org/10.1016/j.micres.2006.04.001
Alexander, D., & Zuberer, D. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 39-45. DOI:https://doi.org/10.1007/BF00369386
Alström, S. (1987). Factors associated with detrimental effects of rhizobacteria on plant growth. Plant and Soil, 102, 3–9. DOI:https://doi.org/10.1007/BF02370892
Azarnoush, R., Yarahamdi, F., Keshavarz- Tawheed, V., & Rajabpour, A. (2023). An investigation on insecticidal effects of three growth stimulant bacteria belong to Pseudomonas sp. to control Anagasta kuehniella and the infected larvae on the host selecting by the parasitoid wasp, Habrabracon hebetor. Plant pest research, 13(1), 15-24. (In Farsi).
Beneduzi, A., Ambrosini, A., & Assaglia, L. M. (2012). Plant Growth-Promoting Rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. International Journal of Genetics and Molecular Biology, 35, 1044-1051. DOI:https://doi.org/10.1590/S1415-47572012000600020
Bong, C. F. J., & Sikorowski, P. P. (1991). Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). Journal of invertebrate pathology, 57, 406–412. DOI:https://doi.org/10.1016/0022-2011(91)90145-G
Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104, 467-483. DOI:https://doi.org/10.1016/j.jfoodeng.2010.12.031
Chi, H. (1988). Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17, 26–34. DOI:https://doi.org/10.1093/ee/17.1.26
Fallahzadeh-Mamaghani, V., Ahmadzadeh, M., & Sharifi, R. (2009). Screening systemic resistance-inducing Pseudomonads fluorescent for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. Plant Patholology, 91, 663−670.DOI:https://www.jstor.org/ stable/41998684
Fathi, F., Saberi-Riseh, R., & Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules183, 627-634. DOI:https://doi.org/10.1016/j.ijbiomac.2021.04.159
Ghosh, S. K., Bera, T., & Chakrabarty, A. M. (2020). Microbial siderophore – A boon to agricultural sciences. Biological Control, 144, 104214. DOI:https://doi.org/10.1016/j.biocontrol.2020.104214
Hariprasad, P., & Niranjana, S. (2009). Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil, 316, 13–24. DOI:https:// doi.org/10.1007/s11104-008-9754-6
Huang, Y. B., & H. Chi. (2012). Age-stage, two-sex life table of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying females age-specific life table to insect population. Insect Science, 19, 263–273. DOI:https://doi.org/10.1111/j.1744-7917.2011.01424.x
Ishwarya, R., Vaseeharan, B., Subbaiah, S., Nazar, A. K., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., & Al-Anbr, M. N. (2018). Sargassum wightii-synthesized ZnO nanoparticles–from antibacterial and insecticidal activity to immunostimulatory effects on the green tiger shrimp Penaeus semisulcatus. Journal of Photochemistry and Photobiology B: Biology183, 318-330. DOI:https://doi.org/10.1016/j.jphotobiol.2018.04.049
Ingegno, B. L., Candian, V., Psomadelis, I., Bodino, N., & Tavella, L. (2017). The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans. Bulletin of Entomological Research, 107(3), 340–348. DOI:https://doi.org/10.1017/S0007485316001036
Jameel, M., Shoeb, M., Khan, M.T., Ullah, R., Mobin, M., Farooqi, M. K. & Adnan, S. M. (2020). Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: A novel nanotechnology approach for pest control. American Chemical Society5(3), 1607-1615. DOI:https://doi.org/ 10.1021/acsomega.9b03680
John, R. P., Tyagi, R., Brar, S., Surampalli, R., & Prévost, D. (2011). Bio encapsulation of microbial cells for targeted agricultural delivery. Critical Reviews In Biotechnology, 31, 211–226. DOI:https://doi.org/10.3109/07388551.2010.513327
Jones, U. S., Katyal, J. C., Mamaril, C. P., & Park, C. S. (1982). Wetland rice-nutrient deficiencies other than nitrogen. Rice Research Strategies for the Future. Manila, IRRI. pp. 327-378. DOI:http://books.irri.org/9711040611_content.pdf
Ghodsalavi, B., Ahmadzadeh, M., Soleimani, M., Madloo, P. B., & Taghizad- Farid, R. (2013). Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Australian Journal of Crop Science, 7(3), 338-344.
Gholami, M., & Kimiaiy- Talab, M. R. (2006). Physiology of temperate zone fruit trees. Written by Miklos Faust. Bu-Ali Sina University Press, Hamadan. pp.  486. (in Farsi).
Glick, B. R., Penrose, D., & Wendo, M. (2001). Bacterial promotion of plant growth. Biotechnology Advanced, 19,135-138.
 Glick, B. R. (1995). The enhancement of plant growth by free-Living bacteria. Canadian Journal of Microbiology, 41, 109-117. DOI:https://doi.org/10.1139/m95-015
Kanost, M. R., & Clem, R. J . (2012). Insect proteases. In Gilbert , L. I. (Ed.). Insect molecular biology and biochemistry. Academic Press, San Diego, pp. 346 –364. DOI:https://doi.org/10.1016/B978-0-12-384747-8.10010-8
Keel, C., & Défago, G. (1997). Interactions between beneficial soil bacteria and root pathogens: mechanisms and ecological impact. In: A.C., Gange V.K. Brown (Ed.), multitrophic interaction in terrestrial system. Oxford, Blackwell Science. pp. 24-47.
Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B. N., Wang, H., Liu, P., & Jiang, W. (2019). Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy, 9(5), 266. DOI:https://doi.org/10.3390/ agronomy9050266
Koochaki, A., & Sarmadnia, G. H. (2012). Physiology of crop plant. Jahad-e Daneshgahi Mashhad, Mashhad, Iran. pp. 87. (in Farsi).
Larsen, J., Cornejo, P., & Miguel- Barea, J. (2009). International between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of cucumsi sativas. Soil Biology and Biochemistry, 41, 286-292. DOI:https://doi.org/10.1016/j.soilbio.2008.10.029
Leong, J. (1986). Siderophore: their biochemistry and possible role in the biocontrol of plant pathogens. Annual Review Journal of Phytopathology, 24, 187-209. DOI:https://doi.org/10.1146/ annurev.py.24.090186.001155
Liang, Y. C., Zhang, W. H., Chen, Q., & Ding, R. X. (2005). Effects of silicon on tonoplast H+–ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53, 29-37. DOI:https://doi.org/10.1016/ j.envexpbot.2004.02.010
Lopes, F. C., Martinelli, A. H. S., John, E. B. O., & Ligabue-Braun, R. (2021). Microbial hydrolytic enzymes: Powerful weapons against insect pests. In: Khan M. A., and Ahmad W., (Eds.). Microbes for Sustainable Insect Pest Management. Sustainability in Plant and Crop Protection. Springer; Basel, Switzerland: pp. 1–31. DOI:https://doi.org/10.1007/978-3-030-67231-7_1
Maurhofer, M., Keel, C., Haas, D., & Défago, G. (1995). Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathology, 44, 40-50. DOI: https://doi.org/10.1111/j.1365-3059.1995.tb02714.x
Olga, K. S., Nadezhda, A.V., Ruchiy, A.S., Shakhnazarova, V.Y., Vorobyov, N.I., & Chebotar, V.K. (2015). The influence of soils with different textures on development, colonization capacity and interactions between Fusarium culmorum and Pseudomonas fluorescens in soil and on barley roots. Plant and Soil, 389, 131-144. DOI:https://doi.org/10.1007/s11104-014-2351-y
Omidvari, M. (2015). Biological control of Fusarium solani, the causal agent of damping off, by Pseudomonas fluorescens and studying some of their antifungal metabolite productions on it. Msc. Thesis. Tehran University, 94 p. (In Farsi)
Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220. DOI:https://doi.org/10.1139/m96-032
Podile, A. R., & Kishore, G. K. (2006). Plant growth-promoting rhizobacteria. In: S. S. Gnanamanickam (Ed.), Plant-associated bacteria. Netherlands, pp. 155-159. DOI:https://doi.org/10.1007/978-1-4020-4538-7
Picard, C., Cello, I., Ventura, M., Fani, R., & Guckert, A. (2000). Frequency and biodiversity of 2,4-diacetyphloroglucinol production bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied and Environmental Microbiology, 66, 948-955.  DOI:https://doi.org/10.1128/AEM.66.3.948-955.2000
Rajam, R., Karthik, P., Parthasarathi, S., Joseph, G. S., & Anandharamakrishnan, C. (2012).  Effect of whey protein - alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. Journal of Functional Foods, 4, 891–898. DOI:https:// doi.org/10.1016/j.jff.2012.06.006
Saberi-Riseh, R., Moradi-Pour, M., Mohammadinejad, R., & Thakur, V. K. (2021). Biopolymers for    biological control of plant pathogens: Advances in microencapsulation of beneficial microorganisms. Polymers, 13(12), 1938. DOI:https://doi.org/10.3390/polym13121938
Sarkhandia, S., Devi, M.,  Sharma,  G.,  Mahajan, R., Chadha, P.,  Saini, H. S., & Kaur, S. (2023). Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiology, 23(95). DOI:https://doi.org/10.1186/s12866-023-02841-w
Sehrawat, A., Sindhu, S. S., & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15-38. DOI:https://doi.org/10.1016/S1002-0160(21)60058-9
Schippers, B. (1988). Biological control of pathogens with rhizobacteria. Philosophical transactions of the Royal Society of London. Biological Sciences, 318, 283-293. DOI:https://doi.org/10.1098/ rstb.1988.0010
Sharma, P. K., Gill, O. P., & Sharma, B .L. (1992). Effect of source and mode of sulfur application on yield of groundnut (Arachis hypogaea L.). Indian Journal of Agronomy, 3, 489-492.
Sheard, G. F. (1966). The economic importance of the tomato as a commercial crop. Scientific Horticulture, 18, 5-9. DOI:https://www.jstor.org/stable/45126659
Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., & Khan, A. (2006). Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology, 22, 641–650. DOI:https://doi.org/10.1007/s11274-005-9084-2
Son, H. J., Park, G.T., Cha, M. S., & Heo, M. S. (2006). Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 97, 204-210. DOI:https://doi.org/10.1016/j.biortech.2005.02.021
Subashri, R., Raman, G. & Sakthivel, N. (2013). Biological control of pathogens and plant growth promotion potential of fluorescent Pseudomonads. In Bacteria in agrobiology: disease management. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 77-110. DOI:doi.org/10.1007/978-3-642-33639-3_4
Ta, L. P., Bujna, E., Antal, O., Ladányi, M., Juhász, R., Szécsi, A., Kun, S., Sudheer, S., Gupta, V. K., & Nguyen, Q. D. (2021). Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. International Journal of Biological Macromolecules183, 1136-1144. DOI:https://doi.org/10.1016/j.ijbiomac.2021.04.170.
Tahmasbi, F., Lakzian, A., Khavazi, K., & Pakdin- Parizi, A. (2014). Isolation, identification and evaluation of sidrophore production in Pseudomonas bacteria and its effect on hydroponically grown corn. Journal of Soil Biology, 3 (1), 75-87. (In Farsi).
Ugras, S. & Uzmez, S. (2016). Characterization of a newly identified lipase from a lipase producing bacterium. Frontiers in Biology, 11(4), 323–330. DOI:https://doi.org/10.1007/s11515-016-1409-z
Yadav, A. N, Kaur, T., Devi ,R., Kour, D., Yadav, N. (2021). Biodiversity and biotechnological applications of extremophilic microbiomes: current research and future challenges. In: Yadav, A. N., Rastegari, A. A., and Yadav, N. (Eds.). Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp. 278–290.
Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97(2), 250-256. DOI:https://doi.org/10.1094/PHYTO-97-2-0250
Wu, Z., Guo, L., Qin, S. & Li, C. (2012). Encapsulation of R. planticola Rs-2 from alginate starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. Journal of Industrial Microbiology & Biotechnology, 39, 317–327. DOI:https://doi.org/10.1007/s10295-011-1028-2
Yuan, J. S., Köllner, T. G., Wiggins, G., Grant, J., Zhao, N., Zhuang, X., Degenhardt, J., & Chen, F. (2008). Elucidation of the genomic basis of indirect plant defense against insects. Plant Signaling & Behavior3(9), 720-721. DOI:https://doi.org/10.1111/j.1365-313X.2008.03524.x