Optimizing the spores persistence of two isolates of the entomopathogenic fungus, Beauveria bassiana, against ultraviolet radiation using nanocomposite formulation

Document Type : Research Paper

Authors

1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Department of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran

Abstract

The entomopathogenic fungus Beauveria bassiana is an important and universal biological control agent that is used to control many important pests such as cabbage aphid Brevicoryne brassicae. Main limitation of the use of this fungus is environmental persistence to initiate epidemics in susceptible host populations. In this research, the lethal effects of two isolates of the entomopathogenic fungus on adults and second instar nymphs of cabbage aphid and the stability of the entomopathogenic fungus and its nanocomposite formulation against UV-C radiation were investigated. The LC50 value of the cabbage aphid adults was equal to 2.5×105 in WE209 isolate and 9.8×104 spores/ml in WE277 isolate. The LC50 values in the second instar nymphs were 6.4×105 and 3.2×105 spores/ml, respectively. Spore germination after 2 and 3 h exposure to ultraviolet radiation equals to zero for both times in WE209 isolate and 6 and 32%, respectively in WE277 isolate. However, these values were 12% and 37% for WE209 and 65% and 38%, respectively for WE277 base on nanocomposite. These results showed that the nanocomposite of the entomopathogenic fungus B. bassiana based on montmorillonite/salep can be effectively used to increase the stability and as a result, increasing the virulence of the fungus.

Keywords


Ahamad, K., Thapa, R., Regmi, R., Thapa, R. B., & Gautam, B. (2020). Efficacy and profitability of using different Ipm (Integrated Pest Management) measures for the control of cauliflower aphids (Brevicoryne Brassicae Linn.) in different genotypes of cauliflower in chitwan district, nepal. Sustainability in Food and Agriculture 1(2), 80-87. DOI: http://doi.org/10.26480/sfna.02.2020.80.87
Akbari, S., Safavi, S. A., & Ghosta, Y. (2014). Efficacy of Beauveria bassiana (Blas.) Vuill. against cabbage aphid Brevicoryne brassicae L.(Hem.: Aphididae) in laboratory condition. Archives of Phytopathology and Plant Protection, 47(12), 1454-1458. DOI: http://dx.doi.org/10.1080/03235408.2013.845972
Akmal, M., Freed, S., Malik, M. N. & Gul, H. T. (2013). Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) against different aphid species under laboratory conditions. Pakistan Journal of Zoology, 45(1), 71-78.
Batista, D., De Oliveira, I., Ribeiro, A., Fonseca, E., Santos-Magalhães, N., de Sena-Filho, J., Teodoro, A., Grillo, L., de Almeida, R. & Dornelas, C. B. (2017). Encapsulation and release of Beauveria bassiana from alginate–bentonite nanocomposite. The Royal Society of Chemistry Advances, 7(42), 26468-26477. DOI: http://doi.org/10.1039/c7ra02185b
Blanford, S., Thomas, M. B., Pugh, C. & Pell, J. K. (2003). Temperature checks the red queen? resistance and virulence in a fluctuating environment. Ecology Letters, 6(1), 2-5. DOI: https://doi.org/10.1046/j.1461-0248.2003.00387.x
Canassa, V. F., Baldin, E. L. L., Sacilotto, M. G., Lourenção, A. L. & Fanela, T. L. M. (2021). Assessing the resistance of collard greens genotypes to the cabbage aphid (Brevicoryne brassicae)(Hemiptera: Aphididae). Phytoparasitica, 49, 633-644. DOI: https://doi.org/10.1007/s12600-021-00882-3
Dannon, H. F., Dannon, A. E., Douro-kpindou, O. K., Zinsou, A. V., Houndete, A. T., Toffa-Mehinto, J., Elegbede, I., Olou, B. D. & Tamo, M. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3(1), 1-21. DOI: https://doi.org/10.1186/s42397-020-00061-5
Ding, J.-L., Lin, H.-Y., Hou, J., Feng, M.-G. & Ying, S.-H. (2023). The entomopathogenic fungus Beauveria bassiana employs autophagy as a persistence and recovery mechanism during conidial dormancy. Mbio, 14(2), 1-20. DOI: https://doi.org/10.1128/mbio.03049-22
Emami, S., Aramideh, S., Pirsa, S. & Michavd, J. (2021). Lethal effects of fungi Beauveria bassiana (Bals.) and nanosilica on cabbage aphid Brevicoryne brassicae (L.) and its parasitoid Diaeretiella rapae (McIntosh) in laboratory conditions. Journal of Iranian Plant Protection Research, 35(3), 333-345. DOI: https://doi.org/10.22067/jpp.2021.70807.1030
Gahukar, R. T. & Das, R. K. (2020). Plant-derived nanopesticides for agricultural pest control: challenges and prospects. Nanotechnology for Environmental Engineering, 5, 1-9. DOI: https://doi.org/10.1007/s41204-020-0066-2
Iftikhar, A., Hafeez, F., Aziz, M. A., Hashim, M., Naeem, A., Yousaf, H. K., Saleem, M. J., Hussain, S., Hafeez, M. & Ali, Q. (2022). Assessment of sublethal and transgenerational effects of spirotetramat, on population growth of cabbage aphid, Brevicoryne brassicae L.(Hemiptera: Aphididae). Frontiers in Physiology, 13, 2461-2473. DOI: https://doi.org/10.3389/fphys.2022.1014190
Islam, S. M. N., Chowdhury, M. Z. H., Mim, M. F., Momtaz, M. B. & Islam, T. (2023). Biocontrol potential of native isolates of Beauveria bassiana against cotton leaf worm Spodoptera litura (Fabricius). Scientific Reports, 13(1), 8331-8344. DOI: https://doi.org/10.1038/s41598-023-35415-x
Javed, M. W., Hasan, M. u., Sagheer, M., Sahi, S. T. & Mankin, R. W. (2022). Foliar and soil treatments of Brassica napus that elicit antibiosis in Brevicoryne brassicae. Agronomy, 12(4), 882-899. DOI: https://doi.org/10.3390/agronomy12040882
Jia, H., Camara, I., Zhang, Z., Gao, Y., Yang, X., Sangbaramou, R., Zhen, C. a., Shi, W. & Tan, S. (2023). Effect of ultraviolet radiation on Beauveria bassiana virulence and development of protective formulations. Archives of Microbiology, 205(4), 112-119. DOI: https://doi.org/10.1007/s00203-023-03457-4
Jones, K. A. & Burges, H. D. (1998). Technology of formulation and application. Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments, Springer: 7-30.
Khan, S., Nadir, S., Lihua, G., Xu, J., Holmes, K. A. & Dewen, Q. (2016). Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. Journal of Invertebrate Pathology, 133, 87-94. DOI: http://dx.doi.org/10.1016/j.jip.2015.11.010
Khoshfarman-Borji, H., Yali, M. P. & Bozorg-Amirkalaee, M. (2020). Induction of resistance against Brevicoryne brassicae by Pseudomonas putida and salicylic acid in canola. Bulletin of Entomological Research, 110(5), 597-610. DOI: https://doi.org/10.1017/S0007485320000097
Kumar, S., Nehra, M., Dilbaghi, N., Marrazza, G., Hassan, A. A. & Kim, K.-H. (2019). Nano-based smart pesticide formulations: emerging opportunities for agriculture. Journal of Controlled Release, 294, 131-153. DOI: https://doi.org/10.1016/j.jconrel.2018.12.012
Lashkari, M. R., Sahragard, A. & Ghadamyari, M. (2007). Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Insect Science, 14(3), 207-212. DOI: https://doi.org/10.1111/j.1744-7917.2007.00145.x
Le Grand, M. & Cliquet, S. (2013). Impact of culture age on conidial germination, desiccation and UV tolerance of entomopathogenic fungi. Biocontrol Science and Technology, 23(7), 847-859. DOI: https://doi.org/10.1080/09583157.2013.802289
Lee, S.-H., Teramoto, Y. & Endo, T. (2011). Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Composites Part A: Applied Science and Manufacturing, 42(2), 151-156. DOI: https://doi.org/10.1016/j.compositesa.2010.10.014
Leggett, M., Leland, J., Kellar, K. & Epp, B. (2011). Formulation of microbial biocontrol agents–an industrial perspective. Canadian Journal of Plant Pathology, 33(2), 101-107. DOI: https://doi.org/10.1080/07060661.2011.563050
Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M. & Atlihan, R. (2020). Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology, 113(6), 2713-2722. DOI: https://doi.org/10.1093/jee/toaa193
Mondal, S. (2018). Review on nanocellulose polymer nanocomposites. Polymer-Plastics Technology and Engineering, 57(13), 1377-1391. DOI: http://dx.doi.org/10.1080/03602559.2017.1381253
Mousavi, M., Mehrkhou, F., GÜZ, N., Goosta, Y. & Atlihan, R. (2022). Sublethal effects of two entomopathogenic fungi species, Metarhizium anisopliae and Beauveria bassiana, on the cabbage aphid (Brevicoryne brassicae). Turkish Journal of Agriculture and Forestry, 46(4), 441-452. DOI: https://doi.org/10.55730/1300-011X.3016
Mpumi, N., Machunda, R. S., Mtei, K. M. & Ndakidemi, P. A. (2020). Selected insect pests of economic importance to Brassica oleracea, their control strategies and the potential threat to environmental pollution in Africa. Sustainability, 12(9), 3824-3846. DOI: https://doi.org/10.3390/su12093824
Neugart, S., Kläring, H.-P., Zietz, M., Schreiner, M., Rohn, S., Kroh, L. W. & Krumbein, A. (2012). The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (Brassica oleracea var. sabellica). Food Chemistry, 133(4), 1456-1465. DOI: https://doi.org/10.1016/j.foodchem.2012.02.034
Pan, X., Guo, X., Zhai, T., Zhang, D., Rao, W., Cao, F. & Guan, X. (2023). Nanobiopesticides in sustainable agriculture: developments, challenges, and perspectives. Environmental Science: Nano, 10, 41-61. DOI: https://doi.org/10.1039/d2en00605g
Plowright, R. K., Parrish, C. R., McCallum, H., Hudson, P. J., Ko, A. I., Graham, A. L. & Lloyd-Smith, J. O. (2017). Pathways to zoonotic spillover. Nature Reviews Microbiology, 15(8), 502-510. DOI: https://doi.org/10.1038/nrmicro.2017.45
Quesada-Moraga, E., Maranhao, E., Valverde-García, P. & Santiago-Álvarez, C. (2006). Selection of Beauveria bassiana isolates for control of the white flies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicogenic activity. Biological Control, 36(3), 274-287. DOI: https://doi.org/10.1016/j.biocontrol.2005.09.022
Rashidzadeh, A., Olad, A., Salari, D. & Hejazi, M. J. (2014). On the encapsulation of natural pesticide using polyvinyl alcohol/alginate–montmorillonite nanocomposite for controlled release application. Polymer Engineering & Science, 54(12), 2707-2714. DOI: https://doi.org/10.1002/pen.23823
Rezanejade Bardajee, G., Boraghi, S. A., Mahmoodian, H., Rezanejad, Z., Parhizkari, K. & Elmizadeh, H. (2023). A salep biopolymer-based superporous hydrogel for ranitidine delivery: synthesis and characterization. Journal of Polymer Research, 30(2), 66-79. DOI: https://doi.org/10.1007/s10965-023-03436-9
Rojas, V. M. A., Iwanicki, N. S. A., D'Alessandro, C. P., Fatoretto, M. B., Demétrio, C. G. B. & Delalibera Jr, I. (2023). Characterization of Brazilian Cordyceps fumosorosea isolates: Conidial production, tolerance to ultraviolet-B radiation, and elevated temperature. Journal of Invertebrate Pathology, 197, 107888-107897. DOI: https://doi.org/10.1016/j.jip.2023.107888
Safavi, S. A. & Taheri Sarhozaki, M. (2019). Effects of the entomopathogenic fungus, Lecanicillium longisporum on survival and population growth parameters of the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae) under laboratory conditions. Journal of Entomological Society of Iran, 38(4), 377-388. DOI: https://doi.org/10.22117/jesi.2019.123762.1268
Sanlier, N. & Guler, S. (2018). The benefits of Brassica vegetables on human health. Journal of Human Health Research, 1(1), 1-13.
Sarkar, S., Kundu, A., Chakraborty, R. & Mukhopadhyay, A. (2021). A review on nanocomposites and their role in insecticide delivery. Journal of Entomology and Zoology Studies, 9(1), 1985-1988. DOI: https://doi.org/10.22271/j.ento.2021.v9.i1ab.8427
Serebrov, V., Gerber, O., Malyarchuk, A., Martemyanov, V., Alekseev, A. & Glupov, V. (2006). Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biology Bulletin, 33, 581-586. DOI: https://doi.org/10.1134/S1062359006060082
Szwarc, J., Niemann, J., Bocianowski, J., Jakubus, M. & Mrówczyński, M. (2021). Connection between nutrient content and resistance to selected pests analyzed in Brassicaceae hybrids. Agriculture, 11(2), 94. DOI: https://doi.org/10.3390/agriculture11020094
Thostenson, E. T., Li, C. & Chou, T.-W. (2005). Nanocomposites in context. Composites science and technology, 65(3-4), 491-516. DOI: https://doi.org/10.1016/j.compscitech.2004.11.003
Tiwari, S., Sharma, B., Singh, H., Biswas, P. & Kumari, A. (2023). Nanoparticles in pest management. Chaudhary, P., Chaudhary, A., Kumar Nadda, A. and Khati, P. Advances in Nanotechnology for Smart agriculture: Techniques and applications. London, New York, CRC Press: 221-244.
Ulusoy, M. R. & Ölmez-Bayhan, S. (2006). Effect of certain Brassica plants on biology of the cabbage aphid Brevicoryne brassicae under laboratory conditions. Phytoparasitica, 34, 133-138. DOI: https://doi.org/10.1007/BF02981313
Wang, H., Peng, H., Li, W., Cheng, P. & Gong, M. (2021). The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Frontiers in Microbiology, 12, 705343-705354. DOI: https://doi.org/10.3389/fmicb.2021.705343
Wraight, S., Carruthers, R. I., Bradley, C., Jaronski, S., Lacey, L., Wood, P. & Galaini-Wraight, S. (1998). Pathogenicity of the entomopathogenic fungi Paecilomyces spp. and Beauveria bassiana against the silver leaf white fly, Bemisia argentifolii. Journal of Invertebrate Pathology, 71(3), 217-226. DOI: https://doi.org/10.1006/jipa.1997.4734
Wu, J., Du, C., Zhang, J., Yang, B., Cuthbertson, A. G. & Ali, S. (2021). Synthesis of Metarhizium anisopliae–chitosan nanoparticles and their pathogenicity against Plutella xylostella (Linnaeus). Microorganisms, 10(1), 1-15. DOI: https://doi.org/10.3390/microorganisms10010001
Xu, J., Zhang, K., Cuthbertson, A. G., Du, C. & Ali, S. (2020). Toxicity and biological effects of Beauveria brongniartii Fe0 nanoparticles against Spodoptera litura (Fabricius). Insects, 11(12), 895-910. DOI: https://doi.org/10.3390/insects11120895