Wolbachia and cytoplasmic incompatibility in Habrobracon hebetor (Hym.: Braconidae)

Document Type : Research Paper

Authors

Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

Abstract

Cytoplasmic incompatibility (CI) is the most common reproduction manipulation induced by intracellular bacteria, Wolbachia which occurs when infected males mate with an uninfected female. The result of incompatibility in diploid species is embryonic death and in haplodiploid species, CI occurs in two ways: male development (MD) and female mortality (FM). The parasitoid wasp, Habrobracon hebetor infected with a Wolbachia- CI strain. In the present study, after removal of Wolbachia with antibiotic, the incompatibility type was determined by comparing the number of offspring, the number of male progeny and the mortality rate in different developmental stages in the compatible and incompatible crosses of H. hebetor. Also, the effect of temperature on CI intensity was investigated by comparing the number of offspring at 25, 30 and 35 °C in the compatible and incompatible crosses. The results showed that the number of offspring in the incompatible cross was less than the compatible cross and there was no difference in the number of produced males. Moreover, the highest mortality was observed in the egg hatching stage. Finally, high temperatures increased the number of offspring and decreased the severity of CI in the incompatible cross. Together, it can be concluded that CI type is female mortality in these parasitoid wasps. These results shed more light on the mechanisms underlying Wolbachia- host interaction.

Keywords


Badran, F., Fathipour, Y., Bagheri, A., Attaran, M. and Reddy, G. V. 2020. Effects of prolonged mass rearing on life history traits of Habrobracon hebetor (Hymenoptera: Braconidae). International Journal of Pest Management 10.1080/09670874.2020.1830198
Bagheri, Z., Talebi, A. A., Asgari, S. and Mehrabadi, M. 2019a. Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. Journal of Invertebrate Pathology 163: 1-7.
Bagheri, Z., Talebi, A. A., Asgari, S. and Mehrabadi, M. 2019b. Wolbachia promote successful sex with siblings. bioRxiv 855635.
Bluher, S. E., Miller, S. E. and Sheehan, M. J. 2020. Fine-scale population structure but limited genetic differentiation in a cooperatively breeding paper wasp. Genome Biology and Evolution 12(5): 701-714.
Bonneau, M., Landmann, F., Labbe, P., Justy, F., Weill, M. and Sicard, M. 2018. The cellular phenotype of cytoplasmic incompatibility in Culex pipiens in the light of cidB diversity. PLoS Pathogens 14(10): e1007364.
Bordenstein, S. R., Uy, J. J. and Werren, J. H. 2003. Host genotype determines cytoplasmic incompatibility type in the haplodiploid genus NasoniaGenetics 164(1): 223-233.         
Breeuwer, J. A. 1997. Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79: 41-47.
Charlesworth, D. and Willis, J. H. 2009. The genetics of inbreeding depression. Nature Reviews genetics, 10(11): 783-796.
Gebiola, M., Giorgini, M., Kelly, S. E., Doremus, M. R., Ferree, P. M. and Hunter, M. S. 2017. Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin WolbachiaProceedings of the Royal Society B: Biological Sciences 284(1862): 20171433.
Ghimire, M. N. 2008. Reproductive performance of the parasitoid Bracon hebetor Say (Hymenoptera: Braconidae) on various host species of Lepidoptera. Oklahoma State University.
Holden, P. R., Jones, P. and Brookfield, J. F. 1993. Evidence for a Wolbachia symbiont in Drosophila melanogasterGenetics Research 62(1): 23-29.            
Hunter, M. S., Perlman, S. J. and Kelly, S. E. 2003. A bacterial symbiont in the bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proceedingsof the Royal Society of London B: Biological Sciences 270: 2185-2190.
Hurst, G. D., Jiggins, F. M., von der Schulenburg, J. H. G., Bertrand, D., West, S. A., Goriacheva, I. I., Zakharov, I. A., Werren, J. H., Stouthamer, R. and Majerus, M. E. 1999. Male–killing Wolbachia in two species of insect. Proceedings of the Royal Society of London B: Biological Sciences 266: 735-740.
Karamipour, N., Mehrabadi, M. and Fathipour, Y. 2016. Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma lineatum (Hemiptera: Pentatomidae). Scientific Reports 6: 33168.
Kaur, R., Shropshire, J. D., Cross, K. L., Leigh, B., Mansueto, A. J., Stewart, V., Sarah R. Bordenstein, and Bordenstein, S. R. 2021. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host & Microbe. 29(6):879-893
Kent, B. N, and Bordenstein, S. R. 2010. Phage WO of Wolbachia: lambda of the endosymbiont world. Trends in Microbiology 18(4): 173-181.           
King, J. G., Souto-Maior, C., Sartori, L. M., Maciel-de-Freitas, R. and Gomes, M. G. M. 2018. Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nature Communications 9(1): 1-8.
Landmann, F., Orsi, G. A., Loppin, B. and Sullivan, W. 2009. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathogens 5: e1000343.
Laven, H. 1951. Crossing experiments with Culex strains. Evolution 5: 370-375.
Laven, H. 1959. Speciation in mosquitoes speciation by cytoplasmic isolation in the Culex pipiens-complex. Cold Spring Harbor Symposia on Quantitative Biology. Cold Spring Harbor Laboratory Press, pp. 166-173.
LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire, J. D., Layton, E. M., Funkhouser-Jones, L. J., Beckmann, J. F. and Bordenstein, S. R. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543: 243-247.
Moran, N. A., McCutcheon, J. P. and Nakabachi, A. 2008. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42: 165-190.
Mouton, L., Henri, H., Bouletreau, M, and Vavre, F. 2005. Multiple infections and diversity of cytoplasmic  incompatibility in a haplodiploid species. Heredity, 94(2): 187-192.
Narita, S., Nomura, M., and Kageyama, D. 2007. Naturally occurring single and double infection with Wolbachia strains in the butterfly Eurema hecabe: transmission efficiencies and population density dynamics of each Wolbachia strain. FEMS Microbiology Ecology 61(2): 235-245.
Nasehi, S. F., Fathipour, Y., Asgari, S., and Mehrabadi, M. 2021. Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon HebetorMicrobial Ecology. 10.1007/s00248-021-01768-x
O'Neill, S. L. and Karr, T. L. 1990. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature 348: 178-180.
O'Neill, S. L., Giordan,R., Colbert, A., Karr, T. L. and Robertson, H. M. 1992. 16s rrna phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences 89: 2699-2702.
Ross, P. A., Wiwatanaratanabutr, I., Axford, J. K., White, V. L., Endersby-Harshman, N.  M. and        Hoffmann, A. A. 2017. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathogens 13(1): e1006006.            
Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. and Solignac, M. 1992. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proceedings of the Royal Society of London B: Biological Sciences 250: 91-98.
Russell, J. E., Nunney, L., Saum, M. and Stouthamer, R. 2018. Host and symbiont genetic contributions to fitness in a TrichogrammaWolbachia symbiosis. PeerJ 6: e4655.
Shropshire, J. D., Leigh, B. and Bordenstein, S. R. 2020. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? Elife  9: e61989.
Stouthamer, R., Luck, R. F. and Hamilton, W. 1990. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proceedings of the National Academy of Sciences 87: 2424-2427.
Tram, U., Ferree, P. M. and Sullivan, W. 2003. Identification of Wolbachia–host interacting factors through cytological analysis. Microbes and Infection 5(11): 999-1011.         
Vavre, F., Dedeine, F., Quillon, M., Fouillet, P., Fleury, F. and Boulétreau, M. 2001. Within‐species diversity of Wolbachia‐induced cytoplasmic incompatibility in haplodiploid insects. Evolution 55(8): 1710-1714.
Vavre, F., Fleury, F., Varaldi, J., Fouillet, P. and Bouleatreau, M. 2000. Evidence for female mortality in Wolbachia‐mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution 54(1): 191-200.
Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z. and Welch, J. J. 2015. The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings of the Royal Society B: Biological Sciences 282(1807): 20150249.
Werren, J. H., Baldo, L. and Clark, M. E. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology 6(10): 741-751.
Yen, J. H. and Barr, A. R. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature 232: 657-658.