Efficacy of imidacloprid mixture with some acaricides in control of melon aphid, Aphis gossypii (Hem.: Aphididae) under laboratory conditions

Document Type : Research Paper

Authors

Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

The use of pesticide mixtures is one of the effective ways to reduce spraying costs, reduce their consumption and prevent resistance development in the pest’s population. However, due to the potential hazards, before any recommendation to mix pesticides, the need for mixing and its physical and chemical compatibility should be carefully considered. In this study, due to the synchronicity of aphid control with acari pests, the insecticidal performance of mixtures of imidacloprid (SC 35%) with fenpyroximate (SC 5%), spirodiclofen (SC 24%) and etoxazole (EC 10%) were investigated on third instar nymphs of melon aphid, A. gossypii. Furthermore, the activity levels of detoxifying enzymes esterase and glutathione S-transferase was measured in treated insects with these compounds. Bioassay tests were performed with a Potter spray tower method. LC50 value of the imidacloprid alone and in combination with each of the acaricides of fenpyroximate, spirodiclofen and etoxazole were 45.41, 84.91, 44.65 and 48.94 mg/l, respectively. In addition, by estimating the Combination Index (CI), a synergistic effect was observed in the mixture of imidacloprid with each of the acaricides and the highest synergistic activity occurred at concentrations higher than LC30. In mixed treatments, the CI index decreased with increasing concentration. The results of detoxifying enzyme activities showed that the activity levels in mixture of imidacloprid: fenpyroximate and imidacloprid: spirodiclofen were higher than that of imidaloprid alone and mixture of imidacloprid: etoxazol. In this study, the lowest CI index at LC50 concentration, were for binary mixture of imidacloprid: etoxazol (0.529) and imidacloprid: spirodiclofen (0.545) that exhibited high synergistic effect. The results of this study showed that the effectivness of imidacloprid (SC) was increased for control melon aphid, when mixed with the tested acaricides. However, the mixture of imidacloprid: etoxazole showed the highest insecticidal performance.

Keywords


Ahmad, M. A. I. and Matsumura, F. 2012. Synergistic actions of formamidine insecticides on the activity of pyrethroids and neonicotinoids against Aedes aegypti (Diptera: Culicidae).Journal of Medical Entomology 49: 1405-1410.
Ahmad, M., Saleem, M. A. and Sayyed, A. H. 2009. Efficacy of insecticide mixtures against pyrethroid- and organophosphate-resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 65: 266-274.
Amini Jam, N., Kocheili, F., Mossadegh, M. S., Rasekh, A. and Saber, M. 2014. Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. Journal of Crop Protection 3(1): 89-98.
Blackman, R. L. and Eastop, V. F. 2000. Aphids on the world’s crops: an identification and information guide (2nd ed.), Wiley, London, United Kingdom.
Bonnet, J., Corbel, V., Darriet, F., Chandre, F. and Hougard, J. M. 2004. Topical applications of pyrethroid and organophosphate mixtures revealed positive interactions against pyrethroid-resistant Anopheles gambiae. Journal of the American Mosquito Control Association 20(4): 438-443.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254
Chai, R. and Lee, C. 2010. Insecticide resistance profiles and synergism in field populations of the German cockroach (Dictyoptera: Blattellidae) from Singapore. Journal of Economic Entomology 103(2): 460-471.
Chen, X., F. Li, A. Chen, K. Ma, P. Liang, Y. Liu, D. Song and Gao, X. 2017. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover). Pesticide Biochemistry and Physiology 141: 1-8.
Chou, T. C. and Talaly, P. 1984. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation 22: 27-57.
Cisneros, J. J. and Godfrey, L. D. 2001. Midseason pest status of the cotton aphid (Homoptera: Aphididae) in California cotton: is nitrogen a key factor? Environmental Entomology 30: 501-510.
Cloyd, R. A., Galle, C. L. and Keith, S. R. 2007. Greenhouse pesticide mixtures for control of silver leaf whitefly (Homoptera: Aleyrodidae) and twos potted spider mite (Acari: Tetranychidae). Journal of Entomological Science 42: 375-382.
Corbel, V., Raymond, M., Chandre, F., Darriet, F. and Hougard, J. M. 2004. Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Management Science 60(4): 375-380.
Ebert, T.A. and Cartwright, B. 1997. Biology and ecology of Aphis gossypii Glover (Homoptera: Aphididae). Southwestern Entomologist 22(1): 116-153.
Gamil, W. E., Mariy, F. M., Youssef, L. A. and Abdel Halim, S. M. 2011. Effect of indoxacarb on some biological and biochemical aspects of Spodoptera litura (Boisduval) larvae. Annals of Agricultural Science 56(2): 121-126.
Ghasemzadeh, S. 2016. Effects of fenpyroximate and thiacloprid on biological parameters and some biochemical characteristics of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) under laboratory conditions using applied non-linear programming. PhD. Thesis. The University of Urmia (In Persian).
Habig, W. H., Pabst, M. J. and Jakoby, W. B. 1974. Glutathione S- transferase, the first step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130-7139.
Hemingway, J. G., Small, J., Lindsay, S. and Collins, F. H. 1995. Combined use of biochemical, immunological and molecular assays for infection, and species identification and resistance detection in field populations of Anopheles (Diptera: Tephritidae). In Symondson, Lydell, W.O.C.E. (eds.). The Ecology of Agricultural Pests: Biochemical Approaches. Chapman and Hall, London.
Hsu, J., Feng, H. and Wu, W. 2004. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. Journal of Economic Entomology 97(5): 1682-1688.
Irshaid, Y. B. and Hasan, H. S. 2011. Bioresidual effect of two insecticides on melon Aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and its parasitoid Aphidius colemani Verick (Hymenoptera: Brachonidae). Journal of Agricultural and Environmental Science 11(2): 228-236.
Ismail, M. S., Soliman, M. F., El Naggar, M. H. and Ghallab, M. M. 2007. Acaricidal activity of spinosad and abamectin against two-spotted spider mites. Experimental and Applied Acarology 43(2): 129-135.
Kerns, D. L. and Gaylor, M. J. 1992. Insecticide resistance in field populations of the cotton aphid (Homoptera: Aphididae). Journal of Economic Entomology 85(1): 1-8.
Khajehali, J., Van Leeuwen, T., Grispou, M., Morou, E., Alout, H., Weill, M., Tirry, L., Vontas, J. and Tsagkarakou, A. 2010. Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Management Science 66(2): 220-228.
Kim, Y. J., Lee, S. H., Lee, S. W. and Ahn, Y. J. 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross‐resistance and biochemical resistance mechanisms. Pest Management Science 60(10): 1001-1006.
Li, A. Y., Chen, A. C., Miller, R. J., Davey, R. B. and George, J. E. 2007. Acaricide resistance and synergism between permethrin and amitraz against susceptible and resistant strains of Boophilus microplus (Acari: Ixodidae). Pest Management Science 63: 882-889.
Lin, H., Chuan-hua, X., Jin-jun, W., Ming, L., Wen-cai, L. and Zhi-mo, Z. 2009. Resistance selection and biochemical mechanism of resistance to two Acaricides in Tetranychus cinnabarinus (Boiduval). Pesticide Biochemistry and Physiology 93(1): 47-52.
Martin, T., Ochou, G. O., HalaNKlo, F., Vassal, J. M. and Vaissayre, M. 2000. Pyrethroid resistance in the cotton bollworm, Helicoverpa armigera Hubner, in West Africa. Pest Management Science: formerly Pesticide Science 56(6): 549-554.
Noorbakhsh, S., Sahraian, H., Soroosh, M. J., Rezaii, V. and Fotoohi, A. R. 2016. List of pests, diseases and weeds of major agricultural products and the recommended methods for their control. Iranian Plant Protection Organization [in Persian]. Ministry of Jihade-Agriculture.
Olfati-Soomar, R., Zamani, A. A. and Alizadeh, M. 2019. Joint action toxicity of imidacloprid and pymetrozine on the melon aphid, Aphis gossypii. Journal of Crop Protection 124: 104-850.
Sadek, M. M. 2003. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis. Journal of Applied Entomology 127: 396-404.
SAS 9.1.3. 2002. SAS Institute Inc., Cary, NC, USA.
Seyedebrahimi, S. S., Talebi Jahromi, K., Imani, S., Hosseini Naveh, V. and Hesami, S. 2016. Resistance to imidacloprid in different field populations of Aphis gossypii Glover (Hemiptera: Aphididae) in South of Iran. Journal of Entomological and Acarological Research 48: 6-10.
Sheikhi-Garjan, A., Najafi, H., Abbasi, S., Saber, F. and Rashid, M. 2009. The pesticide guide of iran. Capital Book Press.
Shi, X., Jiang, L., Wang, H., Qiao, K., Wang, D. and Wang, K. 2011. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid resistant cotton aphid, Aphis gossypii. Pest Management Science 67: 1528-1533.
Shojaei, A., Talebi Jahromi, K., Hosseininaveh, V. and Sabahi, G. 2018. Synergistic effects of amitraz on imidacloprid and malathion against cotton aphid, Aphis gossypii (Hemiptera: Aphididae). Journal of Agricultural Science and Technology 20(2): 299-308.
Shonga, E., Ali, K. and Azrefegne, F. 2013. Effect of Insecticide Rotation and Mixtures Use for Resistance Management on Cotton Aphid, Aphis gossypii Glover (Hemiptera: Aphididae) in Middle Awash Areas of Ethiopia. Greener Journal of Agricultural Science 3: 569-578.
Taillebois, E. and Thany, S. H. 2016. The differential effect of low-dose mixtures of four pesticides on the pea aphid Acyrthosiphon pisumInsects 7(4): 53.
Van Asperen, K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8: 401-416.
Wang. L. H, Wu. S. H. and Gao. X. W. 2011. Inhibition of insecticide mixtures on Glutathion S-teransferase in Helicoverpa armigera (Hubner), Musca domestica (L.) and Tropoderma variabile (Ballion). International Journal of Integrative Biology 12(1): 6-10.
Ye, S.D., Dun, Y. H and Feng, M. G. 2005. Time and concentration dependent interactions of Beauveria bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniella sanborni and Myzus persicaeAnnals of Applied Biology 146(4): 459-468.
Yi, F., Zou, C., Hu, Q. and Hu, M. 2012. The joint action of destruxins and botanical insecticides (Rotenone, Azadirachtin and Paeonolum) against the cotton aphid, Aphis gossypii Glover. Molecular Ecology 17: 7533-7542.
Yu, S. J. 2014. The toxicology and biochemistry of insecticides. CRC press. P297.
Yu, Y. Y. and Ting, L. C. 2019. Synergistic effect and field control efficacy of the binary mixture of permethrin and chlorpyrifos to brown planthopper (Nilaparvata lugens). Journal of Asia-Pacific Entomology 22: 67-76.
Yorulmaz Salman, S., Aydinli, F. and Ay, R. 2014. Etoxazole resistance in predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae): Cross-resistance, inheritance and biochemical resistance mechanisms. Pesticide Biochemistry and Physiology 122: 96-102.
Yuya, A. I., Tadesse, A., Azerefegne, F. and Tefera, T. 2009. Efficacy of combining Niger seed oil with malathion 5% dust formulation on maize against the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Journal of Stored Products Research 45(1): 67-70.
Zhu, Y. C., Yao, J., Adamczyk, J. and Luttrell, R. 2017. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). Journal of PloS One 12(5): p. e0176837.