بررسی اثر چند حشره کش گیاهی و عصاره فرموله شده Sophora pachycarpa روی شپشک آردآلود چای Pseudococcus viburni در شرایط آزمایشگاه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

2 موسسه علوم باغبانی سازمان تحقیقات آموزش و ترویج کشاورزی، لاهیجان، ایران

چکیده

شپشک آردآلود چای Pseudococcus viburni  (Signoret)  یکی از آفات مهم باغ ­های چای و مرکبات در استان­ های شمال ایران است. در تحقیق حاضر اثر چند حشره­ کش با پایه گیاهی و فرمولاسیون میکروامولسیون عصاره برگ و ریشه­ Sophora pachycarpa روی شپشک چای در شرایط آزمایشگاهی به روش غوطه­ وری برگ بررسی شد. میزان LC50  حشره ­کش­ های ماترین، عصاره فلفل قرمز، اسانس دارچین و سیر، روغن چریش، صابون روغن نارگیل، روغن کرچک، عصاره فرموله ­شده برگ و ریشه گیاه S. pachycarpa و اسپیرومسیفن روی حشرات کامل شپشک آردآلود چای به ­ترتیب 2157، 1538، 2825، 5608، 4746، 6585، 4493، 5357 و 2676 میلی ­گرم ماده فرموله­ شده /لیتر محاسبه شد. همچنین میزان LC50 حشره ­کش ­ها­ی فوق روی پوره سن سوم این حشره به ­ترتیب 2188، 1555، 2809، 5559، 4703، 5842، 3457 ، 5195 و 1856 میلی ­گرم ماده فرموله­ شده/ لیتر محاسبه شد. آزمون­ های زیست­ سنجی نشان ­داد که بیشترین کارایی متعلق به حشره­ کش­ های عصاره فلفل قرمز، ماترین و اسانس دارچین و سیر بود. تیمار پوره ­های سن سوم شپشک آردآلود چای تیمار شده با حشره ­کش­ های گیاهی مورد آزمایش، فعالیت آنزیم ­های سم­ زدا از جمله آلفا- و بتا- استرازها، استیل کولین استراز، گلوتاتیون اس-ترانسفراز(GST)  و سامانه MFO را تحت تاثیر قرار داد. حشره ­کش­ های عصاره فلفل قرمز، اسانس دارچین و سیر و عصاره فرموله شده­ برگ S. pachycarpa سبب کاهش فعالیت آنزیم ­های آلفا-استراز­ها شدند. از آنجا که عصاره فلفل قرمز، ماترین و اسانس دارچین و سیر مرگ و میر قابل ملاحظه­ ای روی پوره­ ها و حشرات کامل شپشک آردآلود چای داشتند، این حشره ­کش ­ها می­ توانند در مدیریت تلفیقی شپشک آردآلود چای مدنظر قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of some botanical insecticides and formulated extract of Sophora pachycarpa on Pseudococcus viburni under laboratory conditions

نویسندگان [English]

  • A. َAsadi 1
  • M. Ghadamyari 1
  • S. Ramzi 2
1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2 Tea Research center, Horticultural Science Research Institute, Agricultural Research, Education and Extension organization (AREEO), Lahijan, Iran
چکیده [English]

Tea mealybug, Pseudococcus viburni (Signoret) is one of the important pests of tea and citrus orchards in Northern provinces of Iran. In the current study, the effect of several plant-based insecticides and microemulsion formulaion of Sophora pachycarpa leaf and root extract were investigated against tea mealybug under laboratory conditions by leaf dip method. The LC50 values of matrine, pepper extract, cinnamon and garlic essential oil, neem oil, coconut oil soap, castor oil, formulated leaf and root extracts of S. pachycarpa, and espiromesifen were determined as 2157, 1538, 2825, 5608, 4746, 6585, 4493, 5357 and 2676 mg formulated/l on adult of the tea mealybug, respectively. In addition, the LC50 of aforementioned compounds was calculated as 2188, 1555, 2809, 5559, 4703, 5842, 3457, 5195 and 1856mg formulated/l for third instar nymph of this insect, respectively. The bioassays showed that pepper extract, matrine, and cinnamon and garlic essential oil were most efficient treatments against tea mealybug. Treatments of third instar nymphs by the insecticides also affected the activity of detoxifying enzymes including alpha- and beta-esterases, acetylcholinesterase, glutathione S-transferase (GST) and MFO system. Pepper extract, cinnamon and garlic essential oil, and formulated leaf extract of S. pachycarpa decreased the activities of α-esterase. Since the pepper extract, matrine, cinnamon and garlic essential oil showed significant mortality against nymphs and adults of the tea mealybug these insecticides can be considered in the integrated management of the tea mealybug.

کلیدواژه‌ها [English]

  • Botanical pesticides
  • Detoxification enzymes
  • Extract of Sophora pachycarpa
  • Toxicity
Amir Besheli, B., Toorani, A. H., & Abbasipour, H. (2019). The effect of biorational insecticideson the citrus aphids and their predator, Coccinella septempunctata L. Acta agriculture Slovenica, 114(2), 221-229. DOI:https://doi.org/10.14720/aas.2019.114.2.7
Amini Jam, N. 2017. Effect of botanical insecticides, Dayabon® and Palizin® against Aphis fabae Scopli (Hem: Aphididae) and functional response of its parasitoid wasp, Lysiphlebus fabarum (Marshall) (hym: Braconidae). Plant Pest Research, 7(4), 13-28. DOI:https://doi.org/10.22124/ IPRJ.2018.2744 (in Farsi)
Aramjoo, H., Mohammadparast-Tabas, P., Farkhondeh, T., Zardast, M., Makhdoumi, M., Samarghandian, S., & Kiani, Z. (2022). Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride induced toxixity in rats. BMC Complementary Medicine and Hterapies. 22, 76. DOI:https://doi.org/10.1186/s12906-022-03554-9
Ali, K., Sagheer, M., Hassan, M., Rashid, A., & Shahid, M. (2021). Bioactivity of medicinal plant extracts as toxicants and enzyme inhibitors against insect pests of stored commodities. Journal Crop Protection, 10(1), 95-109. DOI:https://doi.org/20.1001.1.22519041.2021.10.1.11.5
Akdeniz, D., & Ozman, A. (2011). Antimitotic effects of the biopesticide oxymatrine. Caryologia, 64(1), 117-120. DOI:https://doi.org/10.1080/00087114.2011.10589771
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254. DOI: https://doi.org/10.1016/0003- 2697(76)90527-3
Bakr, E. M., Soliman, Z. R., Hassan, M. F., & Tawadrous, S. S. D. (2012). Biological activity of the organic pesticide against the red spider mite Tetranychus urticae Koch. Acarines, 6, 35-39. DOI: https://doi.org/10.21608/AJESA.2012.163624
Brogdon, W. G., McAllister, J. C., & Valule, J. (1997). Hemperoxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233-237.
Cheng, Y., Luo, J., Zhang, N., Yu, W., Jiang, J., & Dai, G. (2021). Insecticidal activities of Salvia hispanica L. essential oil combinations of their main compounds against the beet armyworm Spodoptera exigua. Industrial Crop Production. 162, 113271, DOI:https://doi.org/10.1016/ i.indcrop.2021.113271
Danaye Tos, A. M., Farazmand, H., Auliai Tarshiz, A., & Sirjani, M. (2013). The effect of red pepper and garlic extract to control pistachio psyllium Agonoscena pistaciae in field conditions, Biological Control in Plant Medicine, 1(2), 91-99. DOI:https://doi.org/ 10.22092/BCPP.2013.100611
Emami, M. S. (2016). Bioefficacy of some biorational insecticides for the control of Aphis gossypii Glover, 1877, (Hemiptera: Aphididae) on greenhouse grown cucumber. Acta agriculturae Slovenica, 107(2), 419. DOI:https://doi.org/10.14720/aas.2016.107.2.14
Eshghi, J., Toorani, A., Abbasipour, H., & Amiri Besheli, B. (2017). Comparative effect of chemical and botanical pesticides on the first nymph instar of white peach scale, Pseudaulacaspis pentagona and its predator, Chilocorus bipustulatus ladybird in the field conditions. 2nd Iranian International Congress of Entomology, 2-4 September, Iran, p. 48.
Erdogan, P., Esin Kilinc, G., Aksu, P., Kahyaoglu, M., & Ertugrul Babaroglu, N. (2019). Investigation of formulation preparation of two plant extracts and determination of the effectiveness on Tetranycus urticae Koch (Arachnida: Tetranychidae). Horticulture International Journal, 3(3). 160-164. DOI: https://doi.org/10.15406/hij.2019.03.00124
Farazmand, H., Golmohammadi, G. R., & Moshiri, A. (2012). The efficacy of organic pesticides for control of stpomegranate aphid, Aphis punicae Passerini (Hem.: Aphididae). Proceedings of the 1st Organic National Congress, 17- 18 October, Ardebil, Iran. pp. 408-411.
Gholamzadeh-Chitgar, M., & Pourmoradi, S. (2017). An evaluation of the effect of botanical insecticide, palizin in comparison with chemical insecticide, imidacloprid on the black citrus aphid, Toxoptera aurantii Boyer de Fonscolombe and its natural enemy, Aphidius colemani Viereck. Journal of Plant Protection Research, 57(2), 101-106. DOI:https://doi.org/10.1515/jppr-2017-0013
Gaire, S., Lewis, C. D., Booth, W., Scharf, M. E., Zheng, W., Ginzel, M. D., & Gondhalekar, A. D. (2020). Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pesticide Biochemistry and Physiology, 169, 104667. DOI:https://doi.org/10.1016/j.pestbp.2020.104667
Hwang, I. C., Kim, J, Kim, H. M., Kim, D. I., Kim, S. G., Kim, S. S., & Jang, C. (2009). Evaluation of toxicity of plant extract made by neem and matrine against main pests and natural enemies. Korean Society of Applied Entomology, 48, 87-94. DOI:https://doi.org/10.5656/KSAE.2009.48.1.087
Heydari, S., Toorani, A. H., Doostdar Kalkenari, L., & Abbasipour, H. (2016). Comparison effects of botanical pesticides on first instar nymphs of the citrus cushion, Pulvinaria aurantii Cockerell and its ladybird predator, Cryptolaemus montrouzierin Mulsant. Proceedings of the 22nd Iranian Plant Protection Congress, 27-30 August, Tehran, Iran. pp. 815.
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathion S-transferase, the first step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139. DOI:https: //doi.org/10.1016/S0021-9258(19)42083-8
Hasheminia, S. M., Jalali Sendi, Talebi Jahromi, K., & Moharramipour, S. (2011). The effect of Artemisia annua L. and Achillea millefolium L. crude leaf extracts on the toxicity, development, feeding efficiency and chemical activities of small cabbage, Pieris rapae L. (Lepidoptera: Pieridae). Journal of Pesticide and Biochemistry Physiology, 99(3), 244-249. DOI:https://doi.org/10.1016/j. pestbp.2010.12.009
Isman, M. B., & Tak, J. H. (2017). Inhibition of acetylcholinesterase by essential oils and monoterpenoids: A relevant mode of action for insecticidal essential oils. Biopesticides International, 13(2), 71-78.
Jaafreh, M., Khleifat, K. M., Qaralleh, H., & Al- Limoum, M. O. (2019). Antibacterial and antioxidant activities of Centeurea damascena methanolic extract. Journal of Basic and Applied Research in Biomedicine, 5(1), 55-63. DOI:https://doi.org/10.48550/arXiv.1911.02243
Jankowska, M., Rogalska. J., Wyszkowska. J., & Stankiewicz. M. (2017). Molecular targets for      components of essential oils in the insect nervous system- A review. Molecules, 23, 2-20. DOI:https://doi.org/10.3390/molecules23010034
Kumrungsee, N., Pluempanupat, W., Koul, O., & Bullangpoti, V. (2014). Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. Journal of Pest Science, 87(4), 721-729. DOI:https://doi.org/10.1007/s10340-014-0602-6
Kiran, S., Kujur, A., Patel, L., Ramalakshmi, K., & Prakash, B. (2017). Assessment of toxici and biochemical mechanisms underlying the insecticidal activity of chemically characteraized Boswellia carterii essential oil against insect pest of legume seeds. Journal of Pesticides Biochemistry and Physiology, 139, 17-23. DOI:https://doi.org/10.1016/j.pestbp.2017.04.004
Lee, S. E., Choi, W. S., Lee, H. S., & Park. B. S. (2000). Cross-resistance of a chlorpyrifos methyl resistant sreain of Oryzaephilus surinamensis (Coleoptera: Cucujidae) to fumigant toxicity of essential oil extracted from Eucalyptus globulus and its major monoterpene, 1, 8- cineole. Journal of Stored Products Research, 36, 383-389. DOI:https://doi.org/10.1016/s0022-474x(99)00059-4
Li, L., Yuan, Y., Wu, L., & Chen, M. (2018). Effects of host plants on the feeding behavior and detoxification enzyme activities in Hyphantria cunea (Lepidoptera: Arctiidae) larvae. Acta Entomologica Sinica, 61(2), 232-239. DOI:https://doi.org/10.16380/j.kcxb.2018.02.010
Li. A. Y., Chen, A. C., Miller, R. J., Davey, R. B., & George, J. E. (2007). Acaricide resistance and synergism between permethrin and amitraz against susceptible and resistant strains of Boophilus microplus (Acari: Ixodidae). Pest Management Science, 63, 882-889. DOI:https://doi.org/10. 1002/ps.1417
Mao, L., & Henderson, G. (2007). Antifeedant Activity and Acute and Residual Toxicity of Alkaloids from Sophora flavescens (Leguminosae) against formosan subterranean Termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 100(3), 866-70. DOI:https://doi. org/10.1603/0022-0493(2007)100[866: AAAAAR]2.0.CO;2
Oppenorth, F. J. (1979). Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos resistant strain of housefly and their influence on resistance. Pesticide Biochemistry and Physiology, 11(1-3), 176-178. DOI:https://doi.org/10.1016/0048-3575(79)90057-9
O’Neal, S. T., Johnson, E. J., Rault, L. C., & Anderson, T. D. (2019). Vapor delivery of plant essential oils alters pyrethroid efficacy and detoxification enzyme activity in mosquitoes. Journal of Pesticide Biochemistry and Physiology, 157, 88-98. DOI:https://doi.org/10.1016/j.pestbp .2019.03.007
Park, Y. L., & Tak, J. H. (2016). Essential oils for arthropod pest management in agricultural production systems. In Essential oils in food preservation, flavor and safety, Academic Press., 61-70. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00006-7
Ramzi, S., Seraji, A., Azadi Gonabad, A., Mirhaghparast, S. K., Mojib Haghghadam, Z., & Haghighat, Sh. (2018). Toxicity of Artemisia annua (Asteraceae) essential oil on the tea mealy bug, Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae). Archives of Phytopatology and Plant Protection, 50, 941-956. DOI:https://doi.org/10.1080/03235408.2017.1352223
Rahman, S., Biswas, S. K., Barman, N. Ch., & Ferdous, T. (2016). Plant extract as selective pesticide for integrated pest management. Journal of Biotech Research, 2(1), 6-10.
Ruttanaphan, T., Pluempanupat, W., Aungsirisawat, C., Boonyarit, P., Goff, G. L., & Bullangpoti, V. (2019). Effect of plant essential oils and their major constituents on cypermethrin tolerance associated detoxification enzyme activities in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 112(5), 2167-2176. DOI:https://doi.org/10.1093/jee/toz126
Rezaei, M., & Moharramipour, S. (2019). Efficacy of DayabonÒ, a botanical pesticide, on different life stages of Myzus persicae and its biological control agent, Aphidius matricariae. Journal of Crop Protection, 8(1), 1-10.
Rizvi, S. A. H., Xie, F., Ling, S., & Zeng, X. (2019). Development and evaluation of emulsifiable concentrate Formulation containing Sophora alopecuroides L.extract For the novel management of Asian citrus psyllid. Environmental Science and Pollution Research. 26, 21871-21881. DOI:https://doi.org/10. 1007/s11356-019-05418-1
Rahmani, Sh., Bandani, A. R., & Azimi, S. (2016). Effect of Pirimicarb and Thiamethoxam on detoxification enzyme activity in the black bean aphid, Aphis fabae Scopoli (Hem.: Aphididae). Journal of Genetic Engineering and Immunization, 2, 143-153. (in Farsi).
Shahriari, M., Sahbazade, N., & Zibaee, A. (2019). Effects of Teucrium polium L pinene on thedetoxifying and intermediary engaged enzymes of Ephestia kuehniella Zeller, 1879 (Lep: Pyralidae). Acta agriculturae Slovenica, 113(2), 251-261. DOI:https://doi.org/10.14720/aas. 2019.113.2.6
Shahriari, M., Zibaee, A., Shahbazadeh, N., & Shamakhi, L. (2018). Effect of a-pinene, trans- anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology, 150, 40-47. DOI:https://doi.org/10.1016/j.pestbp.2018.06.015
Shahriari, M., Shahbazade, N., Zibaee, A., Khani, A., & Senthil-Nathan, S. (2017). Metabolic response of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) to essential oil of Ajwan and thymol. Toxin Reviews, 36(3), 204-209. DOI:https://doi.org/10.1080/15569543.2017.1294605
Sun, L., Yin, J., Du, H., Liu, P., & Gao, C. (2020). Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Pesticide Biochemistry and Physiology, 163, 254-262. DOI: http://doi.org/10.1016/J.pestbp.2019.11.019
Tarigan, S. I., & Harahap, I. S. (2016). Toxicological and physiological effects of essential oils against Tribolium castaneum (Coleoptera: Tenebrionidae) and Callosobruchus maculatus (Coleoptera: Bruchidae), Journal of Biopesticides, 9(2), 135. DOI:https://doi.org/10. 57182/jbiopestic.9.2.135-147
Tak, J. H., Jovel, E., & Isman, M. B. (2017). Effects of rosemary, thyme and lemongrass oils and their major constituents on detoxifying enzyme activity and insecticidal activity in Trichoplusia ni. Pesticide Biochemistry and Physiology, 140, 9-16. DOI:https://doi.org/10.1016/j.pestbp.2017. 01.012
Toorani, A. H., Abbasipour, H., & Doostdar Kalkenari, L. (2017). Toxicity of selected biorational insecticides to Pulvinaria aurantii Cockerell and its predator, Cryptolaemus montrouzieri Mulsant in citrus field. Soil and Plant Science, 67(8), 723-729. DOI:https://doi.org/10.1080/09064710. 2017.1338745
Tufeki. A. R., Aksit, H., Simsek, S., Karakoc, O. C., Adem, S., Hameed, Z. A., Nuri Atalar, M., & Ridvan Topkaran, A. (2023). Evaluation of insecticidal and enzyme activity potentials of essential oils and extracts of Chenopodium botrys L. against storage products pests. Bulletin of Biotechnology, 4(1), 7-12. DOI:https://doi.org/10.51539/biotech.1213740
Wu, J., Yang, B., Zhang, X., Cuthbertson, A. G. S., & Ali, S. (2021). Synergistic Interaction between the Entomopathogenic Fungus Akanthomyces attenuatus (Zare & Gams) and the Botanical Insecticide Matrine against Megalurothrips usitatus (Bagrall). Journal Fungi (Basel), 7(7), 536. DOI:https://doi.org/10.3390/jof7070536
War, A. R., Paulraj, M. G., Hussain, B., Ahmad, T., War, M. Y., & Ignacimuthu, S. (2014). Efficacy of a combined treatment of neem oil formulation and endosulfan against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). International Journal of Insect Science, 6, IJIS-S13608. DOI:https://doi. org/10.4137/IJIS.S13608
Wang, Y. L., Guan, Z. G., Jia,X. S., Wu, S. Y., & Wei, H. G. (2007). Study progress of matrine application in farming pest control. Journal of Shanxi Agrictural Science, 40, 424-428. DOI: https://doi.org/https://doi.org/10.1002/ps.5817
Xiang, Z., Shang, S., CAI, K., Geng, Z., & Chen, X. (2012). Determination and decline study of matrine residue in tobacco by gas chromatography-nitrogen chemiluminessence detector. Chinese. Journal of Pesticide Science, 14(2), 198-202.
Zanardi, O. Z., Ribeiro, L. D. P., Ansante, T. F., Santos, M. S., Bordini, G. P., Yamamoto, P. T., & Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 67, 160-167. DOI:https://doi.org/10.1016/j.cropro. 2014.10.010