تاثیر کاربرد اسید سالیسیلیک بر میزان خسارت مگس میوه زیتون Bactrocera oleae (Dip.: Tephritidae) روی رقم زیتون مانزانیلا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی گیلان، بخش گیاه‌پزشکی، رشت، ایران

چکیده

مگس میوه زیتون Bactrocera oleae (Dip.: Tephritidae) از آفات مهم زیتون است که باعث زیان اقتصادی و کاهش کیفیت و کمیت روغن آن می­شود. طی این پژوهش در سال ­های 1400 و 1401 اثر دو غلظت­ یک و دو میلی­ مولار اسید سالیسیلیک و شاهد بر رقم زیتون مانزانیلا در ایستگاه تحقیقات زیتون رودبار (استان گیلان) بررسی شد. نتایج نشان داد که هر دو عامل سال و تیمار روی مراحل مختلف رشد مگس زیتون اعم از تخم، لارو سن یک، لارو سن دو، لارو سن سه و شفیره تاثیر معنی ­دار داشتند.  اثر تیمارها در همه­ صفات اندازه ­گیری شده معنی­دار بود. ارزیابی میزان خسارت نشان داد که اسید سالیسیلیک به دلیل اختلال در چرخه تبدیل تخم به لارو باعث کاهش آلودگی میوه به شفیره و حشرات بالغ شد. نتایج اثر سال، در همه صفات مورفولوژیک میوه اعم از طول، عرض، وزن، حجم، چگالی، وزن گوشت میوه و ابعاد هسته در دو سال آزمایش معنی دار بود. اثر تیمار در همه صفات به جز عرض، وزن میوه و وزن گوشت میوه معنی ­دار بود. بررسی اسیدهای چرب روغن زیتون نشان داد که درصد اسید چرب اولییک و لینولییک در نمونه­ های تیمار شده با اسید سالیسیلیک نسبت به نمونه­ های شاهد افزایش یافت. مقدار ماده اسکوالین در تیمارهای سالم اسید سالیسیلیک دو میلی­ مولار در مقایسه با شاهد در سال 1401 افزایش داشت. این یافته ­ها نشان می ­دهد که اسید سالیسیلیک می­تواند در برنامه­ های مدیریت تلفیقی مگس میوه زیتون مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of salicylic acid application on the damage rate of the olive fruit fly Bactrocera oleae (Dip.: Tephritidae) on the olive variety Manzanilla

نویسندگان [English]

  • H. Fardmasoud 1
  • J. Razmjou 1
  • B. Naseri 1
  • M. Abasi Mozhdehi 2
1 Department of Plant Protection, University of Mohaghegh Ardabili, Ardabil, Iran
2 Plant Protection Research Department, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht, Iran
چکیده [English]

The olive fruit fly, Bactrocera oleae (Dip.: Tephritidae), is an important pest affecting olive crops, leading to substantial economic losses and diminishing both the quality and quantity of olive oil production. This study investigated the effects of salicylic acid (SA) treatments at concentrations of 1 mM and 2 mM, with a control, on the Manzanilla olive variety in Rudbar Olive Research Station, Guilan Province during 2021 and 2022. The results indicated that both the year and treatment factors had a significant effect on different developmental stages of olive fruit fly including egg, first, second, and third instar larvae and pupae. The treatment effects were significant across all measured traits. Damage assessments revealed that salicylic acid reduced the contamination of fruit to pupae and adult insects due to disruption in egg to larval formation. The year-related effects on various fruit morphological traits, including length, width, weight, volume, density, fruit flesh weight, and kernel dimensions were significant during the two years survey. The treatment effect was significant for all traits except for the width, fruit weight, and flesh weight of the fruit. Analysis of olive oil fatty acid composition demonstrated an increase in oleic and linoleic acids amount in treatments versus control. The concentration of squalene in healthy samples treated with 2 mM salicylic acid was significantly higher than control in 2022. These findings show that salicylic acid can be considered in olive fruit fly integrated management programs

کلیدواژه‌ها [English]

  • Manzanilla variety
  • olive fly
  • salicylic acid
Abbasi Mojdehi, M. R., Ghannad Amooz, S., & Mojib Haghghadam, Z. (2017). Evaluation "Lure and Kill" technique with attractant traps for olive fruit fly, Bactrocera oleae Rossi (Dip.: Tephritidae) control. Plant Pest Research, 6(4), 49-59. (in Farsi).
 Abdi, L., Asghari, H. R., Tolyat Abolhassani, M., Amerian, M. R., & Naghdi Bodi, H. (2022). Effect of salicylic acid on growth and phytochemical characteristics of Thymus daenensis under drought irrigation. Journal of Plant Process and Function, 11(48), 195-210. (in Farsi)
 Ahmed, F. F., Mansour, A. E. M., & Merwad, M. A. (2015). Physiological studies on the effect of spraying salicylic acid on fruiting of sukkary mango trees. International Journal of ChemTech Research, 8, 2142-2149.
Aljbory, Z., & Chen, M. S. (2017). Indirect plant defense against insect herbivores: A review. Insect Science, 1, 1-22. DOI: https://doi.org/10.1111/1744-7917.12436
Baldwin, I. T., Schmetz, E. A., & Ohnmeriss, T. E. (1994). Wound induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris. Journal of Chemical Ecology, 20, 2139–2158. DOI: https://doi.org/10.1007/bf02066250
Barranco, D., & Rallo, L. (2000). Olive Cultivars in Spain. HortTechnology, 10(1), 107-110. DOI: https://doi.org/10.21273/HORTTECH.10.1.107
Basilios, E. M., Mazomenos, A. P., & Stefanou, D. (2002). Attract and kill of the olive fruit fly Bactrocera oleae in Greece as a part of an integrated control system. International Organization for Biological and Integrated Control West Palaearctic Regional Section Bulletin, 25, 1-11.
Bostock, R. M., Pye, M. F., & Roubtsova, T. V. (2014). Predisposition in plant disease: Exploiting the nexus in abiotic and biotic stress perception and response. Annual Review of Phytopathology, 52, 517-549. DOI: https://doi.org/10.1146/annurev-phyto-081211-172902
Caleca, V. & Rizzo, R. (2006). Effectiveness of c lays and copper products in the control of Bactrocera oleae (Gmelin). In Proceedings of Olivebioteq, Second International Seminar Biotechnology and quality of olive tree products around the Mediterranean Basin, 5-10 November, Italy, pp. 275-282.
Dabbou, S., Rjiba, I., Nakbi, A., Gazzah, N., Issaoui, M., & Hammami, M. (2010). Compositional quality of virgin olive oils from cultivars introduced in Tunisian arid zones in comparison to Chemlali cultivars. Science Horticulutre, 124, 122-127. DOI: http://dx.doi.org/10.5897/AJAR11.1335
Elson-Harris, M. & White, I. (1992). Fruit flies of economic significance: Their identification and bionomics. Centre for Agriculture and Bioscience International, 601 pp. DOI: https://doi.org/ 10.1079/9780851987903.0000
Fardmasoud, H., Razmjou, J., Naseri, B., & Abbasi Mojdehi, M. R. (2024). The effect of some plant hormones on the secondary metabolites of olive fruit and olive fruit fly damage, Bactrocera oleae (Diptera:Tephritidae). Journal of Entomological Society of Iran, 44(1), 55–73. DOI: https:// doi.org.10.61186/jesi.44.1.5
Favaro, R., Resende, J. T. V,. Gabriel, A., Zeist, A. R., Cordeiro, E. C. N., & Favaro Junior, J. L. (2019). Salicylic acid: resistance inducer to two-spotted spider mite in strawberry crop. Horticultura Brasileira, 37, 60-64. DOI: http://dx.doi.org/10.1590/s0102-053620190109
Gonçalves, F. M., Rodrigues, M. C., Pereira, J. A., Thistlewood, H., & Torres, L. M. (2012). Natural mortality of immature stages of Bactrocera oleae (Diptera: Tephritidae) in traditional olive groves from north-eastern Portugal. Biocontrol Science and Technology, 22, 837–854. DOI: https:// doi.org/ 10.1080/09583157.2012.691959
Herron, G., Powis, K., & Rophail, J. (2000). Baseline studies and preliminary resistance survey of Australian populations of the cotton aphid, Aphis gossypii Glover (Hom.: Aphidiae). Australian Journal of Entomology, 39, 33-38. DOI: https://doi.org/10.1046/j.1440-6055.2000.00134.x
Homapour, M., Hamedi M., Moslehishad M., & Safafar H. (2014). Physical and chemical properties of olive oil extracted from olive cultivars grown in Shiraz and Kazeroon. Iranian Journal of Nutrition Sciences & Food Technology, 9(1), 111-120. (in Farsi)
Jafari, Y., & Rezaei, V. (2004). The first report of olive fruit fly importation to Iran. News Entomological Society of Iran, 22, 1. (in Farsi)
Jiankang, C., Kaifang, Z., & Weibo, J. (2006). Enhancement of postharvest disease resistance in Ya Li pear (Pyrus bretschneideri) fruit by salicylic acid sprays on the trees during fruit growth. Plant Pathology, 114, 363-378. DOI: http://dx.doi.org/10.1007/s10658-005-5401-8
Katsoyannos, P. (1992). Olive pests and their control in the Near East. FAO Plant Production and Protection, Food and Agriculture Organization of the United Nations, Rome, Italy. Paper No. 115
Khaleghi, E., Arzani, K., Moallemi, N., & Barzegar, M. (2015). The efficacy of kaolin particle film on oil quality indices of olive trees (Olea europaea L.) cv. ‘Zard’ grown under warm and semi-arid region of Iran. Food Chemistry, 166, 35-41. DOI: https://doi.org/10.1016/j.foodchem.2014.06.006
Khani Basiri, H., Sedghi, H. M. & Seyed Sharifi, R. (2017). Effect of salicylic acid on the quality of edible oil and fatty acids composition in different regions of sunflower (Helianthus annuus L.) heads. Iranian Journal of Plant Physiology, 8 (1), 2285-2292. DOI: http://dx.doi.org/10.22034/ ijpp.2017.539072
Kogan, M., & Paxton, J. (1983). Natural inducers of plant resistance to insects. In: Hedin, P. A. (Ed) Plant resistance to insects. American Chemical Society Symposium. American Chemical Society, Washington, D. C. Series, 208, 153-171. DOI: http://dx.doi.org/10.1021/bk-1983-0208.ch009
Kyçyk, O., Aguilera, M. P., Gaforio, J. J., Jiménez, A., & Beltrán, G. (2016). Sterol composition of virgin olive oil of forty-three olive cultivars from the world collection olive germplasm bank of Cordoba. Journal of the Science of Food and Agriculture 96(12), 4143-4150. DOI: https://doi.org/ 10.1002/ jsfa.7616
 Marchi, S., Guidotti, D., & Ricciolini, M. (2016). Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. International Journal Biometeorol, 60, 1681–1694. DOI: https://doi.org/10.1007/s00484-016-1159-2
Mohsenin, N. N. (1978). Physical properties of plant and animal materials. New York: Gordon & Breach. DOI: https://doi.org/10.4324/9781003062325
Nayebzadeh, A., Sharifi-Sirchi, G. R. & Ahmadi, K. (2016). Resistance induction to green peach aphid (Myzus persicae) in broad been by salicylic acid and β-aminobutyric acid. Journal of Applied Entomology and Phytopathology, 84(1), 13-20. (in Farsi) DOI: http://dx.doi.org/10.22092/jaep.2016.106534  
Ordano, M., Engelhard, I., Rempoulakis, P., Nemny-Lavy, E., Blum, M., & Yasin, S. (2015). Olive fruit fly (Bactrocera oleae) population dynamics in the Eastern Mediterranean: Influence of exogenous uncertainty on a monophagous frugivorous insect. Public of Science ONE, 10, 1–18. DOI: https://doi.org/10.1371/journal.pone.0127798
Orsavova, J., Misurcova, L., Ambrozova, J. V., Vicha, R., & Mlcek, J. (2015). Fatty acids composition of vegetable oils and its contributionto dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences 16, 12871-12890. DOI: https://doi.org/10.3390/ijms160612871
Pagadala Damodaram, K. J., Mahadappa Aurade, R., Kempraj, V., Kumar Roy, T., Seetharamaiah Shivashankara, K., & Verghese, A. (2015). Salicylic acid induces changes in mango fruit that affect oviposition behavior and development of the oriental fruit fly, Bactrocera dorsalis. Public Library of Science ONE, 10(9), e0139124. DOI: https://doi:10.1371/journal.pone.0139124 
Panahandeh S., & Pahlavan Yali, M. (2022). Potassium silicate and salicylic acid effects on onion thrips population density and some growth indices of onion cultivars. Agriculture, Environment & Society 2, 25-30.  DOI: http://dx.doi.org/10.22034/aes.2022.336201.1030
Panayotis, K. (2000). Olive pests and their control in Near East. (3rd ed.) Food and Agriculture Organization of the United Nations, Rome, Italy. pp. 23-36.
Popova, L., Ananieva, V., Hristova, V., Christov, K., Geovgieva, K., Alexieva, V., & Stoinova, Z. (2003). Salicylic acid and methyl jasmonate-induced protection on photosynthesis to paraquat oxidative stress. Bulgarian Journal of Plant Physiology, 29, 133-152.
Qaiser, H., Shamsul, H., Mohd, I., & Aqil, A. (2010). Effect of exogenous salicylic acid under changing environment. Environmental and Experimental Botany, 68, 14-25. DOI: https://doi.org/10.1016/ j.envexpbot.2009.08.005
SAS Institute Inc. 2002. SAS/STAT user’s guide. Version 9.4. SAS Institute Inc., Cary, North Carolina. DOI: https://doi.org/10.1017/cbo9780511804786.002
Savage, G. P., & McNeil, D. L. (1998). Chemical composition of Hazelnuts (Corylus avellana L.) grown in New Zealand. Food Science and Technology, 49, 199-203. DOI: https://doi.org/10.3109/ 09637489809086412
Schweiger, R., Heise, A. M., Persicke, M. & Muller, C. (2014). Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant, Cell and Environment, 37, 1574-1585. DOI: https://doi.org/10.1111/pce.12257
Senthil-Nathan, S., Kalaivani, K., Choi, M. Y., & Paik, C. H. (2009). Effects of jasmonic acid induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Pesticide Biochemistry and Physiology, 95, 77-84. DOI: https://doi.org/10.1016/j.pestbp.2009 .07.001
Sharaf, N. S. (1980). Life history of the olive fruit fly, Dacus oleae Gmel. (Diptera: Tephritidae), and its damage to olive fruits in Tripolitania. Zeitschrift für Angewandte Entomologie, 89, 390-400. DOI: https://doi.org/10.1111/j.1439-0418.1980.tb03480.x
Sime, K. R., Daane, K. M., Messing, R. H. & Johnson, M. W. (2006). Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera: Braconidae), as a parasitoid of the olive fruit fly. Biological Control, 39, 248-255. DOI: https://doi.org/10.1016/j.biocontrol.2006.06.007
Tsitsipis, J. A. (1977). An improved method for the mass rearing of the olive fruit fly, Dacus oleae (Gmel.) (Diptera: Tephritidae). Journal of Applied Entomology, 83, 419-426. DOI: https://doi.org/10.1111/j.1439-0418.1977.tb02419.x
Tsitsipis, J. A. (1980). Effect of constant temperatures on larval and pupal development of olive fruit flies reared on artificial diet. Environmental Entomology, 9, 764–768. DOI: https://doi.org/ 10.1093/ee/9.6.764  
Underwood, N. (1999). The influence of plant and herbivore characteristics on the interactions between induced resistance and herbivore population dynamics. American Naturalist, 153, 282-294. DOI: https://doi.org/10.1086/303174
Xu, Z., Harvey, K. A., Pavlina, T., Dutot, G., Hise, M., Zaloga, G. P., & Siddiqui, R. A. (2012). Steroidal compounds in commercial parenteral lipid emulsions. Nutrients, 4, 904-921. DOI: https://doi.org/ 10.3390/nu4080904
Yan, S., & Dong, X. 2014. Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. DOI: https://doi.org/10.1016/j.pbi.2014.04.006
Zhang, Y., Chen, K., Zhang, S., & Ferguson, I. (2003). The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28, 67-74. DOI: https://doi.org/10.1016/ s09255214(02)00172-2