Abdul, R. W., Barkat, H., & Sharma, H. C. (2015). Induced resistance in groundnut by
jasmonic acid and salicylic acid through alteration of trichome density and oviposition by
Helicoverpa armigera (Lepidoptera: Noctuidae). AoB Plants, 5, 1-9. DOI: https://doi.org/10.1093/aobpla/plt053
Aldaghi, M., Allahyari, H., Hosseini-Naveh, V., & Behboodi, K. (2021). Effect of Trichoderma harzianum Tr6 in inducing resistance against greenhouse whitefly, Trialeurodes vaporariorum (Hem.: Aleyodidae) in Tomato. Plant Protection, 44(3), 107-119. DOI: https://doi.org/10.22055/ ppr.2021.17128 (In Farsi)
Alınç, T., Cusumano, A., Peri, E., Torta, L., & Colazza, S. (2021)
. Trichoderma harzianum Strain T22 modulates direct defense of tomato plants in response to
Nezara viridula feeding activity
. Journal of Chemical Ecology, 47(4), 455-462.
DOI: https://doi.org/10.1007/s10886-021-01260-3
Alizadeh, H. R., Behboudi, K., Ahmadzadeh, M., Javan-Nikkhah, M., Zamioudis, C., Pieterse, C. M. J., & Bakker, P. H. M. (2013). Induced systemic resistance in cucumber and
Arabidopsis thaliana by the combination of
Trichoderma harzianum Tr6 and
Pseudomonas sp. Ps14.
Biological Control, 65, 14-23.
DOI: https://doi.org/10.1016/j.biocontrol.2013.01.009
Altomare, C., Norvell, W. A., Bjo¨rkman, T., & Harman, G. E. (1999). Solubilization of Phosphates and Micronutrients by the Plant-Growth-Promoting and Biocontrol Fungus
Trichoderma harzianum Rifai 1295-22.
Applied and Environmental Microbiology, 65(7), 2926-2933.
DOI: https://doi.org/10.1128/AEM.65.7.2926-2933.1999
Ayoubi, N., Zafari, D., & Mirabolfathy, M. (2012). Combination of Trichoderma species and Bradyrhizobium japonicum in control of Phytophthora sojae and soybean growth. Journal of Crop Protection, 1(1), 67-79. DOI: https://doi.org/20.1001.1.22519041.2012.1.1.4.5
Bagheri, S., Kocheily, F., Mosadegh, M. S., & Shishehbor, P. (2012). Investigation on
population changes of jasmine whitefly Aleuroclava jasmini (Takahashi) (Homo.:
Aleyrodidae) in citrus orchards of Dezful city. 20th Iranian Plant Protection Congress. 25-28 August, Shiraz. pp. 666. (In Farsi)
Baldwin, I. T., & Schultz, J. C. (1983). Rapid changes in tree leaf chemistry induced by
damage: evidence for communication between plants. Science, 221, 277-279. DOI: https://doi.org/10.1126/science.221.4607.277
Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Prieto, J. D., Fanti, P., Guerrieri, E., Iodice, L., Lingua, G., Lorito, M., & Maffei, M. E. (2013). Tomato below ground–above ground interactions:
Trichoderma longibrachiatum affects the performance of
Macrosiphum euphorbiae and its natural antagonists.
Molecular Plant-Microbe Interactions, 26(10), 1249-1256.
DOI: https://doi.org/10.1094/MPMI-02-13-0059-R
Bawa, G., Feng, L., Yan, L., Du, Y., Shang, J., Sun, X., Wang, X., Yu, L., Liu, C., Yang, W., & Du, J. (2019). Pre-treatment of salicylic acid enhances resistance of soybean seedlings to Fusarium solani. Plant Molecular Biology, 101(3), 315-323. DOI: https://doi.org/10.1007/s11103-019-00906-x.
Blake, C., Christensen, M. N., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by
Bacillus subtilis.
Molecular Plant-Microbe Interactions, 34(1), 15-25.
DOI: https://doi.org/10.1094/MPMI-08-20-0225-CR
Carillo, P., Woo, L. S., Comite, E., El-Nakhel, C., Rouphael, Y., Fusco, G. M., Borzacchiello, A., Lanzuise, S., & Vinale, F. (2020). Application of
Trichoderma harzianum, 6-Pentyl-α-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes.
Plants, 9, 771.
DOI: https://doi.org/10.3390/plants9060771
Coppola, M., Diretto, G., Digilio, M. C., Woo, S. L., Giuliano, G., Molisso, D., Pennacchio, F., Lorito, M., & Rao, R. (2019). Transcriptome and metabolome reprogramming in tomato plants by
Trichoderma harzianum strain T22 primes and enhances defense responses against aphids.
Frontiers in Physiology, 10, 745-754.
DOI: https://doi.org/10.3389/fphys.2019.00745
Farrokhi, S. (2016). Localization of commercial production of Encarsia formosa (Hym., Aphelinidae), the parasitoid of greenhouse whitefly. The final report of the research project of the Iranian Research Institute of Plant Protection. Frost number, 50720, 25 p. (In Farsi)
Felton, G. W., Korth, K. L., Bi, J. L., Wesley, S. V., Huhman, D. V., Mathews, M. C., &
Murphy, J. B. (1999). Inverse relationship between systemic resistance of plants to
microorganisms and to insect herbivory.
Current Biology, 9, 317-320.
DOI: https://doi.org/10.1016/S0960-9822(99)80140-7
Ghamari, M., Hosseininaveh, V., Talebi, K., Nozari, J., & Allahyari, H. (2020). Biochemical characterization of the induced immune system of pistachio (
Pistacia vera) by Salicylic Acid
. International Journal of Fruit Science, 20(2), 117-132.
DOI: https://doi.org/10.1080/15538362.2019.1586025
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004).
Trichoderma species-opportunistic, avirulent plant symbionts.
Nature Reviews Microbiology, 2, 43-56.
DOI: https://doi.org/10.1038/nrmicro797
Hashem, A., Tabassum, B., & Abd-Allah, E. F. (2019).
Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress.
Saudi Journal of Biological Sciences, 26(6), 1291-1297.
DOI: https://doi.org/10.1016/j.sjbs.2019.05.004
Jafarbeigi, F., Samih, M. A., Alaei, H., & Shirani, H. (2020). Induced tomato resistance against
Bemisia tabaci triggered by salicylic acid, β-aminobutyric acid, and
Trichoderma.
Neotropical Entomology, 49(3), 456-467.
DOI: https://doi.org/10.1007/s13744-020-00771-0
Kafi, M., Babalar, M., Nikbakht, A., Ebrahimzadeh, H., Etemadi, N., & Samavat, S. (2009). Effect of humic acid spray on nutrients uptake, protein content and postharvest life of
Gerbera jamesonii L. cv. Malibu.
Iranian Journal of Horticultural Science, 8, 238-248. (In Farsi)
http://ijhs.ut.ac.ir/?_action=articleInfo&article=19944&vol=1976
Khalid, A. S., Mohamad Roof, M. N., Rebecca, H. H., & Idris, A. B. (2015). Aphid-induced
defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera:
Aleyrodidae). Scientific Reports, 5(13), 1-9. DOI: https://doi.org/10.1038/srep13697
Kumar, S., Arutselvan, A. R., Masurkar, P., Singh, U. B., Tripathi, R., Bhupenchandra, I., Minkina, T., & Keswani, C. (2024).
Bacillus subtilis-Mediated Induction of Disease Resistance and Promotion of Plant Growth of Vegetable Crops. In Mageshwaran, V., Singh, U. B., Saxena, A. K., & Singh, H. B. (Eds).
Applications of Bacillus and Bacillus Derived Genera in Agriculture, Biotechnology and Beyond. Springer Nature Singapore. pp. 165-211.
DOI: https://doi.org/10.1007/978-981-99-8195-3_9
Liorens, E., García-Agustín, P., & Lapeña, L. (2017). Advances in induced resistance by natural compounds: towards new options for woody crop protection.
Science Agriculture, 74, 90-100.
DOI: https://doi.org/10.1590/1678-992X-2016-0012
Maketon, M., Apisitsantikul, J., & Siriraweekul, C. (2008). Greenhouse evaluation of
Bacillus subtilis AP-01 and
Trichoderma harzianum AP-001 in controlling tobacco diseases
. Brazil Journal of Microbiology, 39, 296-300.
DOI: https://doi.org/10.1590/S1517-838220080002000018
McLean, K. L., Hunt, J. S., Stewart, A., Wite, D., Porter, I. J., & Villalta, O. (2012).
Compatibility of a
Trichoderma atroviride biocontrol agent with management practices of
Allium crops.
Crop Protection, 33, 94-100.
DOI: https://doi.org/10.1016/j.cropro.2011.11.018
Menjivar, R. D., Cabrera, J. A., Kranz, J., & Sikora, R. A. (2012). Induction of metabolite organic compounds by mutualistic endophytic fungi to reduce the greenhouse whitefly
Trialeurodes vaporariorum (Westwood) infection on tomato.
Plant and Soil, 352(1), 233-241.
DOI: https://doi.org/10.3390/agriculture10120587
Pourtaghi, E., Talaei-Hassanloui, R., Nasibi, F., & Fotouhifar, K. B. (2020). Endophytic colonization of tomato by Beauveria bassiana for control of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Acta Biologica, 27, 149-160. DOI: https://doi.org/10.18276/ab.2020. 27-14
Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Biological control of the root-knot nematode,
Meloidogyne incognita on tomato using bioproducts of microbial origin.
Applied Soil Ecology, 56, 58-62.
DOI: https://doi.org/10.1016/j.apsoil.2012.02.008
Rani, P. U., & Yasur, J. (2009). Physiological changes in groundnut plants induced by
pathogenic infection of Cercosporidium personatun Deighton. Allelopathy Journal, 23(2), 369-378.
Rokhzadi, A., Asgazadeh, A., Darvish, F., Nour-Mohammed, G., & Majidi, E. (2008). Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer
arietinum L.) under field conditions. American Eurasian Journal of Agriculture Environmental Science, 3, 253-257.
Rudresh, D. L., Shivaprakash, M. K., & Prasad, R. D. (2005). Effect of combined application of Rhizobium, phosphate solubilizing bacterium and
Trichoderma spp. on growth, nutrient uptake and yield of chickpea (
Cicer aritenium L.).
Applied Soil Ecology, 28, 139-146.
DOI: https://doi.org/10.1016/j.apsoil.2004.07.005
Rumyantsev, S. D., Alexeeve, V. Y., Sorokan, A. V., Burkhanova, G. F., Cherepanova, E. A., Garafutdinov, R. R., Maksimov, I. V., & Vesolova, S. V. (2023). Additive effect of the composition of endophytic bacteria bacillus subtilis on systemic resistance of wheat against greenbug aphid Schizaphis graminum due to lipopeptides. Life, 13(1), 214. DOI: https://doi.org/10.3390/life13010214
Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O., & Spiegel, Y. (2001). Biological control of root knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 91, 687-693. DOI: https://doi.org/10.1094/PHYTO.2001.91.7.687
Sikora, R. A., Schäfer, K., & Dababat, A. A. (2007). Modes of action associated with microbially induce in planta suppression of plant-parasitic nematodes. Australasian Plant Pathology, 36, 124-134. https://link.springer.com/article/10.1071/AP07008
Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V., & Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by
Bacillus subtilis SYST2.
Frontiers in Microbiology, 8, 171-180.
DOI: https://doi.org/10.3389/fmicb.2017.00171
Valenzuela-Soto, J. H., Estrada-Hernández, M. G., Ibarra-Laclette, E., & Délano-Frier, J. P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231(2), 397-410. DOI: https://doi.org/10.1007/s00425-009-1061-9.
van Lenteren
, J. C., Szabo, P., & Huisman, P. W. T. (1992). The parasite-host relationship between
Encarsia formosa Gahan (Hymenoptera, Aphelinidae) and
Trialeurodes vaporariorum (Westwood) (Homoptera, Aleyrodidae).
Journal of Applied Entomology, 114(5), 392-399.
DOI: https://doi.org/10.1111/j.1439-0418.1992.tb01142.x
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S., & Lorito, M. (2008).
Trichoderma–plant–pathogen interactions.
Soil Biology and Biochemistry, 40(1), 1-10.
DOI: https://doi.org/10.1016/j.soilbio.2007.07.002
Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long‐lasting priming of resistance to pests and pathogens.
New Phytologist, 193(3), 770-778.
DOI: https://doi.org/10.1111/j.1469-137.2011.03987.x
Zaim, S., Bekkar, A. A., & Belabid, L. (2018). Efficacy of
Bacillus subtilis and
Trichoderma harzianum combination on chickpea Fusarium wilt caused by
F. oxysporum f. sp.
ciceris.
Archives of Phytopathology and Plant Protection, 51(3-4), 217-226.
DOI: https://doi.org/10.1080/03235408.2018.1447896