Amir Besheli, B., Toorani, A. H., & Abbasipour, H. (2019). The effect of biorational insecticideson the citrus aphids and their predator,
Coccinella septempunctata L.
Acta agriculture Slovenica,
114(2), 221-229.
DOI:https://doi.org/10.14720/aas.2019.114.2.7
Amini Jam, N. 2017. Effect of botanical insecticides, Dayabon® and Palizin® against
Aphis fabae Scopli (Hem: Aphididae) and functional response of its parasitoid wasp,
Lysiphlebus fabarum (Marshall) (hym: Braconidae).
Plant Pest Research, 7(4), 13-28.
DOI:https://doi.org/10.22124/ IPRJ.2018.2744 (in Farsi)
Aramjoo, H., Mohammadparast-Tabas, P., Farkhondeh, T., Zardast, M., Makhdoumi, M., Samarghandian, S., & Kiani, Z. (2022). Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride induced toxixity in rats. BMC Complementary Medicine and Hterapies. 22, 76. DOI:https://doi.org/10.1186/s12906-022-03554-9
Ali, K., Sagheer, M., Hassan, M., Rashid, A., & Shahid, M. (2021). Bioactivity of medicinal plant extracts as toxicants and enzyme inhibitors against insect pests of stored commodities.
Journal Crop Protection,
10(1), 95-109.
DOI:https://doi.org/20.1001.1.22519041.2021.10.1.11.5
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding.
Analytical Biochemistry,
72, 248-254.
DOI: https://doi.org/10.1016/0003- 2697(76)90527-3
Bakr, E. M., Soliman, Z. R., Hassan, M. F., & Tawadrous, S. S. D. (2012). Biological activity of the organic pesticide against the red spider mite
Tetranychus urticae Koch
. Acarines,
6, 35-39.
DOI: https://doi.org/10.21608/AJESA.2012.163624
Brogdon, W. G., McAllister, J. C., & Valule, J. (1997). Hemperoxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. Journal of the American Mosquito Control Association, 13(3), 233-237.
Cheng, Y., Luo, J., Zhang, N., Yu, W., Jiang, J., & Dai, G. (2021). Insecticidal activities of
Salvia hispanica L. essential oil combinations of their main compounds against the beet armyworm
Spodoptera exigua.
Industrial Crop Production.
162, 113271,
DOI:https://doi.org/10.1016/ i.indcrop.2021.113271
Danaye Tos, A. M., Farazmand, H., Auliai Tarshiz, A., & Sirjani, M. (2013). The effect of red pepper and garlic extract to control pistachio psyllium
Agonoscena pistaciae in field conditions,
Biological Control in Plant Medicine,
1(2), 91-99.
DOI:https://doi.org/ 10.22092/BCPP.2013.100611
Emami, M. S. (2016). Bioefficacy of some biorational insecticides for the control of
Aphis gossypii Glover, 1877, (Hemiptera: Aphididae) on greenhouse grown cucumber.
Acta agriculturae Slovenica,
107(2), 419.
DOI:https://doi.org/10.14720/aas.2016.107.2.14
Eshghi, J., Toorani, A., Abbasipour, H., & Amiri Besheli, B. (2017). Comparative effect of chemical and botanical pesticides on the first nymph instar of white peach scale, Pseudaulacaspis pentagona and its predator, Chilocorus bipustulatus ladybird in the field conditions. 2nd Iranian International Congress of Entomology, 2-4 September, Iran, p. 48.
Erdogan, P., Esin Kilinc, G., Aksu, P., Kahyaoglu, M., & Ertugrul Babaroglu, N. (2019). Investigation of formulation preparation of two plant extracts and determination of the effectiveness on
Tetranycus urticae Koch (Arachnida: Tetranychidae).
Horticulture International Journal,
3(3). 160-164
. DOI: https://doi.org/10.15406/hij.2019.03.00124
Farazmand, H., Golmohammadi, G. R., & Moshiri, A. (2012). The efficacy of organic pesticides for control of stpomegranate aphid, Aphis punicae Passerini (Hem.: Aphididae). Proceedings of the 1st Organic National Congress, 17- 18 October, Ardebil, Iran. pp. 408-411.
Gholamzadeh-Chitgar, M., & Pourmoradi, S. (2017). An evaluation of the effect of botanical insecticide, palizin in comparison with chemical insecticide, imidacloprid on the black citrus aphid,
Toxoptera aurantii Boyer de Fonscolombe and its natural enemy,
Aphidius colemani Viereck.
Journal of Plant Protection Research,
57(2), 101-106.
DOI:https://doi.org/10.1515/jppr-2017-0013
Gaire, S., Lewis, C. D., Booth, W., Scharf, M. E., Zheng, W., Ginzel, M. D., & Gondhalekar, A. D. (2020). Bed bugs,
Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils.
Pesticide Biochemistry and Physiology,
169, 104667.
DOI:https://doi.org/10.1016/j.pestbp.2020.104667
Hwang, I. C., Kim, J, Kim, H. M., Kim, D. I., Kim, S. G., Kim, S. S., & Jang, C. (2009). Evaluation of toxicity of plant extract made by neem and matrine against main pests and natural enemies.
Korean Society of Applied Entomology, 48, 87-94.
DOI:https://doi.org/10.5656/KSAE.2009.48.1.087
Heydari, S., Toorani, A. H., Doostdar Kalkenari, L., & Abbasipour, H. (2016). Comparison effects of botanical pesticides on first instar nymphs of the citrus cushion, Pulvinaria aurantii Cockerell and its ladybird predator, Cryptolaemus montrouzierin Mulsant. Proceedings of the 22nd Iranian Plant Protection Congress, 27-30 August, Tehran, Iran. pp. 815.
Hasheminia, S. M., Jalali Sendi, Talebi Jahromi, K., & Moharramipour, S. (2011). The effect of Artemisia annua L. and Achillea millefolium L. crude leaf extracts on the toxicity, development, feeding efficiency and chemical activities of small cabbage, Pieris rapae L. (Lepidoptera: Pieridae). Journal of Pesticide and Biochemistry Physiology, 99(3), 244-249. DOI:https://doi.org/10.1016/j. pestbp.2010.12.009
Isman, M. B., & Tak, J. H. (2017). Inhibition of acetylcholinesterase by essential oils and monoterpenoids: A relevant mode of action for insecticidal essential oils. Biopesticides International, 13(2), 71-78.
Jaafreh, M., Khleifat, K. M., Qaralleh, H., & Al- Limoum, M. O. (2019). Antibacterial and antioxidant activities of
Centeurea damascena methanolic extract.
Journal of Basic and Applied Research in Biomedicine, 5(1), 55-63.
DOI:https://doi.org/10.48550/arXiv.1911.02243
Jankowska, M., Rogalska. J., Wyszkowska. J., & Stankiewicz. M. (2017). Molecular targets for components of essential oils in the insect nervous system
- A review
. Molecules,
23, 2-20.
DOI:https://doi.org/10.3390/molecules23010034
Kumrungsee, N., Pluempanupat, W., Koul, O., & Bullangpoti, V. (2014). Toxicity of essential oil compounds against diamondback moth
, Plutella xylostella, and their impact on detoxification enzyme activities.
Journal of Pest Science, 87(4), 721-729.
DOI:https://doi.org/10.1007/s10340-014-0602-6
Kiran, S., Kujur, A., Patel, L., Ramalakshmi, K., & Prakash, B. (2017). Assessment of toxici and biochemical mechanisms underlying the insecticidal activity of chemically characteraized Boswellia carterii essential oil against insect pest of legume seeds. Journal of Pesticides Biochemistry and Physiology, 139, 17-23. DOI:https://doi.org/10.1016/j.pestbp.2017.04.004
Lee, S. E., Choi, W. S., Lee, H. S., & Park. B. S. (2000). Cross-resistance of a chlorpyrifos methyl resistant sreain of Oryzaephilus surinamensis (Coleoptera: Cucujidae) to fumigant toxicity of essential oil extracted from Eucalyptus globulus and its major monoterpene, 1, 8- cineole. Journal of Stored Products Research, 36, 383-389. DOI:https://doi.org/10.1016/s0022-474x(99)00059-4
Li, L., Yuan, Y., Wu, L., & Chen, M. (2018). Effects of host plants on the feeding behavior and detoxification enzyme activities in
Hyphantria cunea (Lepidoptera: Arctiidae) larvae.
Acta Entomologica Sinica,
61(2), 232-239.
DOI:https://doi.org/10.16380/j.kcxb.2018.02.010
Li. A. Y., Chen, A. C., Miller, R. J., Davey, R. B., & George, J. E. (2007). Acaricide resistance and synergism between permethrin and amitraz against susceptible and resistant strains of Boophilus microplus (Acari: Ixodidae). Pest Management Science, 63, 882-889. DOI:https://doi.org/10. 1002/ps.1417
Oppenorth, F. J. (1979). Glutathione S-transferase and hydrolytic activity in a tetrachlorvinphos resistant strain of housefly and their influence on resistance.
Pesticide Biochemistry and Physiology,
11(1-3), 176-178.
DOI:https://doi.org/10.1016/0048-3575(79)90057-9
O’Neal, S. T., Johnson, E. J., Rault, L. C., & Anderson, T. D. (2019). Vapor delivery of plant essential oils alters pyrethroid efficacy and detoxification enzyme activity in mosquitoes.
Journal of Pesticide Biochemistry and Physiology,
157, 88-98.
DOI:https://doi.org/10.1016/j.pestbp .2019.03.007
Park, Y. L., & Tak, J. H. (2016). Essential oils for arthropod pest management in agricultural production systems. In
Essential oils in food preservation, flavor and safety, Academic Press., 61-70.
DOI: https://doi.org/10.1016/B978-0-12-416641-7.00006-7
Ramzi, S., Seraji, A., Azadi Gonabad, A., Mirhaghparast, S. K., Mojib Haghghadam, Z., & Haghighat, Sh. (2018). Toxicity of
Artemisia annua (Asteraceae) essential oil on the tea mealy bug,
Pseudococcus viburni Signoret (Hemiptera: Pseudococcidae).
Archives of Phytopatology and Plant Protection, 50, 941-956.
DOI:https://doi.org/10.1080/03235408.2017.1352223
Rahman, S., Biswas, S. K., Barman, N. Ch., & Ferdous, T. (2016). Plant extract as selective pesticide for integrated pest management. Journal of Biotech Research, 2(1), 6-10.
Ruttanaphan, T., Pluempanupat, W., Aungsirisawat, C., Boonyarit, P., Goff, G. L., & Bullangpoti, V. (2019). Effect of plant essential oils and their major constituents on cypermethrin tolerance associated detoxification enzyme activities in
Spodoptera litura (Lepidoptera: Noctuidae).
Journal of Economic Entomology,
112(5), 2167-2176.
DOI:https://doi.org/10.1093/jee/toz126
Rezaei, M., & Moharramipour, S. (2019). Efficacy of DayabonÒ, a botanical pesticide, on different life stages of Myzus persicae and its biological control agent, Aphidius matricariae. Journal of Crop Protection, 8(1), 1-10.
Rizvi, S. A. H., Xie, F., Ling, S., & Zeng, X. (2019). Development and evaluation of emulsifiable concentrate Formulation containing
Sophora alopecuroides L.extract For the novel management of Asian citrus psyllid.
Environmental Science and Pollution Research.
26, 21871-21881
. DOI:https://doi.org/10. 1007/s11356-019-05418-1
Rahmani, Sh., Bandani, A. R., & Azimi, S. (2016). Effect of Pirimicarb and Thiamethoxam on detoxification enzyme activity in the black bean aphid, Aphis fabae Scopoli (Hem.: Aphididae). Journal of Genetic Engineering and Immunization, 2, 143-153. (in Farsi).
Shahriari, M., Sahbazade, N., & Zibaee, A. (2019). Effects of
Teucrium polium L pinene on thedetoxifying and intermediary engaged enzymes of
Ephestia kuehniella Zeller, 1879 (Lep: Pyralidae).
Acta agriculturae Slovenica, 113(2), 251-261.
DOI:https://doi.org/10.14720/aas. 2019.113.2.6
Shahriari, M., Zibaee, A., Shahbazadeh, N., & Shamakhi, L. (2018). Effect of a-pinene, trans- anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of
Ephestia kuehniella Zeller (Lepidoptera: Pyralidae).
Pesticide Biochemistry and Physiology,
150, 40-47.
DOI:https://doi.org/10.1016/j.pestbp.2018.06.015
Shahriari, M., Shahbazade, N., Zibaee, A., Khani, A., & Senthil-Nathan, S. (2017). Metabolic response of
Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) to essential oil of Ajwan and thymol.
Toxin Reviews,
36(3), 204-209.
DOI:https://doi.org/10.1080/15569543.2017.1294605
Sun, L., Yin, J., Du, H., Liu, P., & Gao, C. (2020). Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Pesticide Biochemistry and Physiology, 163, 254-262. DOI: http://doi.org/10.1016/J.pestbp.2019.11.019
Tarigan, S. I., & Harahap, I. S. (2016). Toxicological and physiological effects of essential oils against
Tribolium castaneum (Coleoptera: Tenebrionidae) and
Callosobruchus maculatus (Coleoptera: Bruchidae),
Journal of Biopesticides,
9(2), 135.
DOI:https://doi.org/10. 57182/jbiopestic.9.2.135-147
Tak, J. H., Jovel, E., & Isman, M. B. (2017). Effects of rosemary, thyme and lemongrass oils and their major constituents on detoxifying enzyme activity and insecticidal activity in
Trichoplusia ni.
Pesticide Biochemistry and Physiology,
140, 9-16.
DOI:https://doi.org/10.1016/j.pestbp.2017. 01.012
Toorani, A. H., Abbasipour, H., & Doostdar Kalkenari, L. (2017). Toxicity of selected biorational insecticides to
Pulvinaria aurantii Cockerell and its predator
, Cryptolaemus montrouzieri Mulsant in citrus field
. Soil and Plant Science,
67(8), 723-729.
DOI:https://doi.org/10.1080/09064710. 2017.1338745
Tufeki. A. R., Aksit, H., Simsek, S., Karakoc, O. C., Adem, S., Hameed, Z. A., Nuri Atalar, M., & Ridvan Topkaran, A. (2023). Evaluation of insecticidal and enzyme activity potentials of essential oils and extracts of
Chenopodium botrys L. against storage products pests.
Bulletin of Biotechnology,
4(1), 7-12.
DOI:https://doi.org/10.51539/biotech.1213740
Wu, J., Yang, B., Zhang, X., Cuthbertson, A. G. S., & Ali, S. (2021). Synergistic Interaction between the Entomopathogenic Fungus
Akanthomyces attenuatus (Zare & Gams) and the Botanical Insecticide Matrine against
Megalurothrips usitatus (Bagrall).
Journal Fungi (Basel), 7(7), 536.
DOI:https://doi.org/10.3390/jof7070536
War, A. R., Paulraj, M. G., Hussain, B., Ahmad, T., War, M. Y., & Ignacimuthu, S. (2014). Efficacy of a combined treatment of neem oil formulation and endosulfan against
Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae).
International Journal of Insect Science,
6, IJIS-S13608.
DOI:https://doi. org/10.4137/IJIS.S13608
Wang, Y. L., Guan, Z. G., Jia,X. S., Wu, S. Y., & Wei, H. G. (2007). Study progress of matrine application in farming pest control.
Journal of Shanxi Agrictural Science,
40, 424-428.
DOI: https://doi.org/https://doi.org/10.1002/ps.5817
Xiang, Z., Shang, S., CAI, K., Geng, Z., & Chen, X. (2012). Determination and decline study of matrine residue in tobacco by gas chromatography-nitrogen chemiluminessence detector. Chinese. Journal of Pesticide Science, 14(2), 198-202.
Zanardi, O. Z., Ribeiro, L. D. P., Ansante, T. F., Santos, M. S., Bordini, G. P., Yamamoto, P. T., & Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance.
Crop Protection,
67, 160-167.
DOI:https://doi.org/10.1016/j.cropro. 2014.10.010