Abbas, M. S. T. (2020). Interactions between Bacillus thuringiensis and entomophagous insects. Egyptian Journal of Biological Pest Control, 30 (51), 2-9. DOI:https://doi.org/10.1186/s41938-020-00255-8.
Abedi, Z., Saber, M., Gharekhani, G. H., Mehrvar, A., & Kamita, S. G. (2014). Lethal and Sublethal Effects of Azadirachtin and Cypermethrin on
Habrobracon hebetor (Hymenoptera: Braconidae).
Journal of Economic Entomology, 107(2), 638-645.
DOI: http://doi.org/10.1603/EC13227.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265–267. DOI:https://doi.org/10.1093/jee/18.2.265a.
Adly, D., & Marzouk, W. M. (2019). Efficacy of the larval parasitoid, Bracon hebetor Say. (Hymenoptera: Braconidae) on the greater wax moth larvae, Galleria mellonella (L.) (Lepidoptera: Pyralidae) under laboratory and field conditions. Egyptian Journal of Biological Pest Control, 29(87), 1-7. DOI:https://doi.org/10.1186/s41938-019-0193-x.
Ahmad, S., Ansari, M. S., & Moraiet, M. A. (2013). Demographic changes in Helicoverpa armigera after exposure to neem/azal (1% EC azadirachtin). Crop Protection, 50, 30-36. DOI:https://doi.org/10.1016/j.cropro.2013.03.012.
Ahmad, S., Ansari, M. S., & Muslim, M. (2015). Toxic effects of neem based insecticides on the fitness of Helicoverpa armigera (Hübner). Corp Protection, 68, 72-78. DOI:http://doi.org/10.1016/j.cropro.2014.11.003.
Ali, S., Zhang, C., Wang, Z., Wang, X., Wu, J., Cuthbertson, A. G. S., Shao, Z., &
Qiu, B. (2017). Toxicological and biochemical basis of synergism between the entomopathogenic fungus
Lecanicillium muscarium and the insecticide matrine against
Bemisia tabaci (Gennadius).
Scientific Reports, 7, 46558.
DOI:https://doi.org/10.1038/srep46558.
Allahyari, R., Aramideh, Sh., Michaud, J. P., Safaralizadeh, M. H., & Rezapanah, R. (2020a). Negative life history impacts for Habrobracon hebetor (Hymneoptera: Braconidae) that develop in bollworm larvae inoculated with Helicoverpa armigera Nucleopolyhedrovirus. Journal of Economic Entomology, 113(4), 1648-1655. DOI: https://doi.org/10.1093/jee/toaa066.
Allahyari, R., Aramideh, Sh., Michaud, J. P., Safaralizadeh, M. H., & Rezapanah, R. (2020b). Behavioral and developmental responses of Habrobracon hebetor (Hymenoptera: Braconidae) to larvae of Helicoverpa armigera (Lepidoptera: Noctuidae) inoculated with various concentrations of Bacillus thuringiensis var. kurstaki (Bacillales: Bacillacae). Journal of Insect Science, 20(6), 1-6. DOI: https://doi.org/10.1093/jisesa/ieaa129.
Amirfanak, V., Safavi, S. A., & Forouzan, M. (2023). Study on the life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae) influenced by sublethal concentrations of the matrine. Plant Protection (Scientific Journal of Agriculture), 45(4), 19-35. (In Farsi). DOI:https://org/10.22055/ppr.2022.17991.
Ba, N. M., Baoua, I. B., Kabore, A., Amadou, L., Oumarou, N., Dabire-Binso, C., & Sanon, A. (2014). Augmentative on-farm delivery methods for the parasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae) to control the millet head miner, Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae), in Burkina Faso and Niger. BioControl, 59, 689-696. DOI: https://doi.org/10.1007/s10526-014-9613-8.
Bahmani, N., Latifian, M., Ostovan, H., & Hesami, Sh. (2020). Pathogenic effects of Beauveria bassiana and Bacillus thuringiensis on the population dynamics of Ephestia kuehniella. Egyptian Journal of Biological Pest Control, 30, 94. DOI:https://doi.org/10.1186/s41938-020-00285-2.
Baker, B. P., Green, T. A., & Loker, A. J. (2020). Biological control and integrated pest management in organic and conventional systems.
Biological Control,
140, 104095.
DOI: https://doi.org/10.1016/j.biocontrol.2019.104095.
Bayram, A., Salerno, G., Onofri, A., & Conti, E. (2010). Lethal and sublethal effects of preimaginal treatments with two pyrethroids on the life history of the egg parasitoid Telenomus busseolae. BioControl, 55(6), 697-710. DOI: https://doi.org/10.1007/s10526-010-9288-8.
Bernardi, D., Botton, M., Cunha, U. S., Bernardi, O., Malausa, T., Garcia, M. S., & Nava, D. E. (2013). Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Management Science, 69(1), 75-80. DOI: https://doi.org/10.1002/ps.3364.
Blumberg, D., Navon, A., Keren, S., Goldenberg, A., & Ferkovich, M. (1997). Interactions among
Helicoverpa armigera (Lepidoptera: Noctuidae), its larval endoparasitoid
Microplitis croceipes (Hymenoptera: Braconidae), and
Bacillus thuringiensis.
Journal of Economic Entomology,
90, 1181-1186.
DOI:https://doi.org/10.1093/jee/90.5.1181.
Cheng, X., Ye, J., He, H., Liu, Z., Xu, C., Wu, B., Xiong, X., Shu, X., Jiang, X., & Qin, X. (2018). Synthesis, characterization and in vitro biological evaluation of two matrine derivatives. Scientific Reports, 8(1), 15686. DOI: https://doi.org/10.1038/s41598-018-33908-8.
Fang, X. D., Ouyang, G. C., Lu, H. L., Guo, M. F., & Wu, W. N. (2017). Ecological control of citrus pests primarily using predatory mites and the biorational pesticide matrine. International Journal of Pest Management, 64(3), 262-270. DOI: https://doi.org/10.1080/09670874.2017.1394507
Farag, M. M. A., Ahmed, S. S., & El-Husseini, M. M. (2012). Life history of Habrobracon hebetor Say (Hymenoptera: Braconidae) parasitizing Cadra (Ephestia) cautella (Walker) (Lepidoptera: Pyralidae) on dried date fruits. Egyptian Journal of Biological Pest Control, 22(1), 73-77.
Finney, D. J. (1971). Probit analysis, 3rd ed. Cambridge University Press, Cambridge, UK, 333 pp.
Ghimire, M. N., & Phillips, T. W. (2014). Oviposition and reproductive performance of
Habrobracon hebetor (Hymenoptera: Braconidae) on six different pyralid host species.
Annals of the Entomological Society of America, 107, 809-817.
DOI:https://doi.org/10.1603/AN14046.
Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010) A meta-analysis of preference relationships in phytophagous insects. Ecology Letters, 13, 383–393. DOI: https://doi.org/10.1111/j.1461-0248.2009.01433. x.
Hoddle, M. S., & van Driesche, R. G. (2009). Biological control of insect pests. In: Resh, V.H., Cardé, R.T. (Eds.),
Encyclopedia of Insects, second ed. Academic Press, San Diego, 91–100.
DOI:https:// org/10.1016/B978-0-12-374144-8.00148-X.
Ibargutxi, M. A., Munoz D., Escudero I. R., & Caballero, P. (2008). Interactions between Cry1Ac, Cry2Ab, and Cry1Fa
Bacillus thuringiensis toxins in the cotton pests
Helicoverpa armigera (Hu¨ bner) and
Earias insulana (Boisduval).
Biological Control, 47(1), 89-96.
DOI: https://doi.org/10.1016/j.biocontrol.2008.07.003.
Kabore, A., Ba, N. M., Dabire-Binso, C. L., & Sanon, A. (2017). Field persistence of
Habrobracon hebetor (Say) (Hymenoptera: Braconidae) following augmentative releases against the millet head miner,
Heliocheilus albipunctella (de Joannis) (Lepidoptera: Noctuidae), in the Sahel.
Biological Control, 108, 64-69.
DOI:https://doi.org/10.1016/j.biocontrol.2017.03.001.
Khan, M. A., & Ruberson, J. R. (2017). Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Management Science, 73(12), 2465-2472. DOI: https://doi.org/10.1002/ps.4639.
Kordestani, M., Mahdian, K., Baniameri, V., & Garjan, A. S. H. (2021). Lethal and sublethal effects of proteus, matrine, and pyridayl on Frankliella occidentalis (Thysanoptera: Thripidae). Environmental Entomology, 50(2), 1137-1144. DOI:https://doi.org/10.1093/ee/nvab071.
Kordestani, M., Mahdian, K., Baniameri, V., & Garjan, A. S. H. (2022). Proteus, matrine, and pyridalyl toxicity and their sublethal effects on Orius laevigatus (Hemiptera: Anthocoridae). Journal of Economic Entomology, 115(2), 573-581. DOI:https://doi.org/10.1093/jee/toab267.
Mbata, G. N., & Warsi, S. (2019).
Habrobracon hebetor and
Pteromalus cerealellae as tools in post-harvest integrated pest management
. Insects,
10, 2–12.
DOI: https://doi.org/10.3390/insects10040085.
Nofemela, R. S., & Kfir, R. (2007). Diadegma mollipla parasitizing Plutella xylostella: host instar preference and suitability. Entomologia Experimentalis et Applicata, 126(1), 9-17. DOI: https://doi.org/10.1111/j.1570-7458.2007.00632.x.
Nouri-Ganbalani, G., Borzoui, E., Abdolmaleki, A., Abedi, Z., & Kamita, S. G. (2016). Individual and combined effects of Bacillus thuringiensis and Azadirachtin on Plodia Interpunctella Hubner (Lepidoptera: Pyralidae). Journal of Insect Science, 16(1), 95, 1–8. DOI: https://doi.org/10.1093/jisesa/iew086.
Oluwafemi, A. R., Qiong Rao, Q., Wang, X., & Zhang, H. (2009). Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Science, 16, 409-416. DOI:https://doi.org/10.1111/j.1744-7917.2009.01262. x.
Pizzol, J., Desneux, N., Wajnberg, E., & Thiéry, D. (2012). Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. Journal of Pest Science, 85(4), 489-496. DOI:https://doi.org/10.1007/s10340-012-0434-1.
Rezaei, M., Hesami, Sh., Gheibi, M., & Zohdi, H. (2019). Effect of lethal and sublethal concentrations of three insecticides on some growth parameters of parasitoid wasp,
Habrobracon hebetor by contact and poisonous-host method.
Journal of Plant protection,
33(2), 159-170.
DOI: https://doi.org/10.22067/jpp.v33i2.77262.
Robertson, J. L., Russell, R. M., Preisler, H. K., & Savin, N. E. )2007(. Bioassays with arthropods. Boca Raton, CRC Press. 199 pp. (2nd ed.). CRC Press. DOI: https://doi.org/10.1201/9781420004045.
Saber, M. (2011). Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology, 20(6), 1476-1484. DOI:https://doi.org/10.1007/s10646-011-0704-3.
Shams-Salehi, S., Rajabpour, A., Rasekh, A., & Farkhari, M. (2016). Repellency and some biological effects of different ultrasonic waves on Mediterranean flour moth,
Anagasta kuehniella (Zeller) (Lepidoptera: Pyralidae).
Journal of Stored Products Research, 69, 14-21.
DOI:https://doi.org/10.1016/j.jspr.2016.05.002.
Singh, D., Singh, R. P., & Tripathi, C. P. M. (2016). Effect of host density on life table statistics of
Bracon hebetor Say, 1836 (Hymenoptera: Braconidae).
Tropical Zoology,
29(1), 44-51.
DOI:https://doi.org/10.1080/03946975.2016.1145399.
Stecca, C. S., Bueno, A. F., Pasini, A., Silva, D. M., Andrade, K., & Zirondi Filho, D. M. (2017). Impact of insecticides used in soybean crops to the egg parasitoid Telenomus podisi (Hymenoptera: Platygastridae). Neotropical Entomology, 47(2), 281-291. DOI: https://doi.org/10.1007/s13744-017-0552-9.
Taffar, A., Yeliz-touiker, S., Bendjedid, H., & Soltani, N. (2021). Evaluation of azadirachtin, a biopesticides, on growth, development and cuticle secretion of Mediterranean flour moth,
Ephestia kuehniella Zeller.
Journal of Entomological Research, 45(3), 436-443.
DOI: https://doi.org/10.5958/0974-4576.2021.00068.2.
Torfi, E. T., Rasekh, A., Mossadegh, M. S., & Rajabpoor, A. (2019). Host stage preference of
Aenasius bambawalei (Hymenoptera: Encyrtidae), the parasitoid of cotton mealy bug,
Phenacoccus solenopsis (Hemiptera: Pseudococcidae), under choice and no-choice access.
Journal of Entomological Society of Iran,
39 (3), 241-254.
(In Farsi).
DOI: https://doi.org/10.22117/jesi.2019.126717.1314.
Tran, D. H., Takagi, M., & Takasu, K. (2004). Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leaf miner. Applied Entomology and Zoology, 39(3), 435-441. DOI: https://doi.org/10.1303/aez.2004.435.
Wan, N. F., Yang, J. H., Zhang, J. Y., Wang, Y. J., Chen, X., Ji, Y., & Jiang, J. X. (2019). Prior experiences of endoparasitoids affect their ability to discriminate NPV-infected from non-infected caterpillars.
Biological Control, 128, 64-75.
DOI:https://doi.org/10.1016/j.biocontrol.2018.09.013.
Wei, D., Yao, L., Jun, Z., Lin-quan, G., Guo-qing, Y., & Fang, L. (2019). Selectivity and sublethal effects of some frequently-used biopesticides on the predator
Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae).
Journal of Integrative Agriculture, 18(1), 124-133.
DOI:https://doi.org/10.1016/S2095-3119(17)61845-8.
Wu, J., Yu, X., Wang, X., Tang, L., & Ali, S. (2019). Matrine enhances the pathogenicity of
Beauveria brongniartii against
Spodoptera litura (Lepidoptera: Noctuidae).
Frontiers in Microbiology, 10, 1812.
DOI:https://doi.org/10.3389/fmicb.2019.01812.
Yan, S., Hu, Q., Li, J., Chao, Z., Cai, C., Yin, M., Du, X., & Shen, J. (2019). A star polycation acts as drug nanocarrier to improve the toxicity and persistance of botanical pesticides.
ACS Sustainable Chemistry & Engineering,
7, 17406-17413.
DOI: https://doi.org/10.1021/acssuschemeng.9b04567.
Zanardi, O. Z., Ribeiro, L. P., Ansante, T. F., Santos, M. S., Bordini, G. P.,
Yamamoto, P. T., & Vendramim, J. D. (2015). Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance
. Crop Protection, 67, 160-167.
DOI:https://doi.org/10.1016/j.cropro.2014.10.010.