تأثیر تغذیه از طعمه‌های مختلف بر نگهداری کنه شکارگر Amblyseius swirskii (Acari: Phytoseiidae) در دمای پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

چکیده

کنه شکارگر Amblyseius swirskii Athias-Henriot یکی از مهم­ترین گونه‌های خانواده Phytoseiidae می‌باشد. در پژوهش حاضر، تأثیر تغذیه از طعمه‌های مختلف شامل کنه تارتن دولکه‌ای Tetranychus urticae Koch، کنه غلات Tyrophagus putrescentiae (Schrank) ، سفید بالک پنبه Bemisia tabaci (Gennadius) و هم‌چنین تیمارهای ترکیبی آ‌ن‌ها شامل کنه تارتن+کنه غلات، کنه تارتن+سفید بالک، کنه غلات+سفیدبالک و کنه تارتن+کنه غلات+سفیدبالک روی ویژگی‌های زیستی ماده‌های بالغ این دشمن طبیعی (تغذیه، باروری و زنده‌مانی) پس از هفت روز نگهداری در دمای 10 درجه سلسیوس، مورد مطالعه قرار گرفت. لارو و کنه‌های بالغ ماده به‌ترتیب با تلفات 34/72 و 76/11 درصد، بیش‌ترین و کم‌ترین میزان حساسیت این کنه شکارگر را نسبت به دمای 10 درجه سلسیوس داشتند. بیش‌ترین میزان تغذیه کنه شکارگر پس از نگهداری در دمای پایین از لارو و پوره سن اول کنه تارتن دولکه‌ای مشاهده شد (63/91 طعمه). کم‌ترین میزان تغذیه نیز روی تخم کنه غلات ثبت شد (18/10 طعمه). طعمه‌های مورد مطالعه باروری کل کنه شکارگر را به‌صورت معنی‌داری تحت تأثیر خود قرار دادند؛ بیش‌ترین (13/5 تخم) و کم‌ترین (55/1 تخم) تعداد تخم گذاشته شده توسط کنه شکارگر به‌ترتیب در تیمارهای "کنه تارتن+کنه غلات+سفیدبالک" و "کنه غلات" مشاهده شد. در بررسی میزان مرگ و میر، بالاترین درصد تلفات در کنه‌های شکارگری که روی کنه غلات پرورش داده شده بودند، مشاهده شد. بر اساس نتایج به‌دست آمده، تیمار ترکیبی "کنه تارتن+کنه غلات+سفیدبالک" نسبت به سایر تیمارهای مورد مطالعه شرایط مطلوب‌تری را برای نگهداری کنه شکارگر A. swirskii در شرایط سرد فراهم می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different prey on cold storage of predatory mite Amblyseius swirskii (Acari: Phytoseiidae)

نویسندگان [English]

  • S. Z. Rahimi
  • A. Sedaratian-Jahromi
  • M. Ghane-Jahromi
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
چکیده [English]

Predatory mite Amblyseius swirskii Athias-Henriot is one of the most important species of Phytoseiidae. In the current study, the effects of feeding on different preys including two-spotted spider mite Tetranychus urticae Koch, cereal mite Tyrophagus putrescentiae (Schrank), silverleaf whitefly Bemisia tabaci (Gennadius); together with integrated treatments of these preys including spider mite+cereal mite, spider mite+whitefly, cereal mite+whitefly and spider mite+cereal mite+whitefly on the biological charactristics of adult females of this predator (predation, fecundity and survivorship) were investigated after seven days storage at 10 °C. Larva and adult female with 72.34 and 11.76 % mortality had the highest and lowest susceptibility of this predator to temperature of 10 °C, respectively. The highest feeding of predatory mite after cold storage was observed on the larva and protonymph of T. urticae (91.63 prey). The lowest feeding was recorded on eggs of cereal mite (10.18 prey). Total fecundity of the predatory mite was significantly affected by different prey; the highest (5.13 egg) and lowest (1.55 egg) values of this parameter were recorded when the predatory mite fed on “spider mite+cereal mite+whitefly” and “cereal mite”, respectively. In the view point of mortality, the highest percentage was recorded in the predatory mites that reared on the cereal mite. According to the results obtained, integrated treatment of “spider mite+cereal mite+whitefly” was the most suitable treatment for the storage of A. swirskii at cold conditions than other treatments tested.

کلیدواژه‌ها [English]

  • Whitefly
  • Biological performance
  • Cereal mite
  • Biological control
Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265- 267.
Amano, H., Ishii, Y. and Kobori, Y. 2004. Pesticide susceptibility of two dominant phytoseiid mites, Neoseiulus californicus and N. womersleyi, in conventional Japanese fruit orchards (Gamasina: Phytoseiidae). Journal of Acarological Society of Japan 13: 65-70.
Asadi, P., Sedaratian-Jahromi, A., Ghane-Jahromi, M. and Haghani M. 2019. How Spiromesifen affects some biological parameters and switching behavior of predatory mite Amblyseius swirskii (Acari: Phytoseiidae) when feeding on different ratios of mixed preys. Persian Journal of Acarology 8 (3): 239-251.

Bale, J. S., van Lenteren, J. C. and Bigler, F. 2008. Biological control and sustainable food production. Philosophical Transactions of the Royal Society of London 363: 761-776.

Bayram, A., Ozcan, H. and Kornosor, S. 2005. Effect of cold storage on the performance of Telenomus busseolae Gahan (Hymenoptera: Scelionidae): an egg parasitoid of Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae). BioControl 35: 68-77.
Calvo, F. J., Bolckmans, K. and Belda, J. E. 2011. Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56: 185-192.
Chang, Y. F., Tauber, M. J. and Tauber, C. A. 1995. Storage of massproduced predator Chrysoperla carnea (Neuroptera: Chrysopidae): influence of photoperiod, temperature and diet. Environmental Entomology 24: 1365-1374.
Chen, W. L., Leopold, R. A. and Harris, M. O. 2008. Cold storage effects on maternal and progeny quality of Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Biological Control 46: 122-132.
Colinet, H. and Boivin, G. 2011. Insect parasitoids cold storage: a comprehensive review of factors of variability and consequences. Biological Control 58: 83-95.
Coudron, T. A., Ellersieck, M. R. and Shelby, K. S. 2007. Influence of diet on long-term cold storage of the predator Podisus maculiventris (Say) (Heteroptera: Pentatomidae). BioControl 42: 186-195.
Coudron, T. A., Popham, H. J. R. and Ellersieck, M. R. 2009. Influence of diet on cold storage of the predator Perillus bioculatus (F.). BioControl 54: 773-783.
Farazmand, A., Amir-maafi, M. and Atlihan, R. 2020. Temperature-dependent development of Amblyseius swirskii (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology 25 (3): 538-547.
Fathipour, Y. and Sedaratian, A. 2013. Integrated management of Helicoverpa armigera in soybean cropping systems.In El-Shemy, H. (Ed.). Soybean-pest resistance. InTech. Rijeka. Croatia. pp. 231-280.
Ghazy, N. A., Ohyama, K., Amano, H. and Suzuki, T. 2014. Cold storage of the predatory mite Neoseiulus californicus is improved by pre-storage feeding on the diapausing spider mite Tetranychus urticae. BioControl 59: 185-194.
Ghazy, N. A., Suzuki, T., Amano, H. and Ohyama, K. 2013. Humidity-controlled cold storage of Neoseiulus californicus (Acari: Phytoseiidae): effects on male survival and reproductive ability. Journal of Applied Entomology 137: 376-382.
Helle, W. and Sabelis, M. W. 1985. Spider mites: their biology, natural enemies and control. Elsevier Science Publishing. Amsterdam. The Netherlands.
Heydari, S., Allahyari, H. and Zahedi-Golpayegani, A. 2016. Prey preference and switching behavior of Amblyseius swirskii (Acari: Phytoseiidae) on greenhouse whitefly and two-spotted spider mite. Iranian Journal of Plant Protectection Science 47: 139-150.
Khanamani, M., Fathipour, Y., Talebi, A. A. and Mehrabadi, M. 2017. Evaluation of different artificial diets for rearing the predatory mite Neoseiulus californicus (Acari: Phytoseiidae): diet-dependent life table studies. Acarologia 57 (2): 407-419.
Kivan, M. and Kilic, N. 2005. Effects of storage at low-temperature of various heteropteran host eggs on the egg parasitoid, Trissolcus semistriatus. BioControl 50: 589-600.
Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. and Renault, D. 2011. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comparative Biochemistry and Physiology 158: 229-234.
Larentzaki, E., Powell, G. and Copland, M. J. W. 2007. Effect of cold storage on survival, reproduction and development of adults and eggs of Franklinothrips vespiformis (Crawford). Biological Control 43: 265-270.
Lee, R. E. J. 1991. Principles of insect low temperature tolerance. In Lee, R.E.J. and Denlinger, D.L. (Eds.). Insects at low temperature. Chapman & Hall. New York. USA. pp. 17-46.
Lee, R. E. J. 2010. A primer on insect cold tolerance. In Denlinger, D. L. and Lee, R. E. (Eds.). Low temperature biology of insects. Cambridge University Press. Cambridge. pp. 3-34.
Leopold, R. A. 1998. Cold storage of insects for integrated pest management. In Hallman, G. J. and Denlinger, D. L. (Eds.). Temperature sensitivity in insects and application in integrated pest management. Westview Press. Boulder. USA. pp. 235-267.
Luczynski, A., Nyrop, J. and Shi, A. 2008. Pattern of female reproductive age classes in mass-reared populations of Phytoseiulus persimilis (Acari: Phytoseiidae) and its influence on population characteristics and quality of predators following cold storage. Biological Control 47: 159-166.
Lysyk, T. J. 2004. Effects of cold storage on development and survival of three species of parasitoids (Hymenoptera: Pteromalidae) of house fly, Musca domestica L. Environmental Entomology 33: 823-831.
McMurtry, J. A., De Moraes, G. J. and Sourassou, N. F. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology 18 (4): 297-321.
Moghadasi, M., Allahyari, H., Saboori, A. and Zahedi-Golpayegani, A. 2016. Life table and predation capacity of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) feeding on Tetranychus urticae Koch (Acari: Tetranychidae) on Rose. Journal of Agricultural Science and Technology 18: 1279-1288.
Morewood, W. D. 1992. Cold storage of Phytoseiulus persimilis (Phytoseiidae). Experimental and Appied Acarology 13: 231-236.
Morewood, W. D. 1993. Diapause and cold hardiness of Phytoseiid mites (Acari: Phytoseiidae). European Journal of Entomology 90: 3-10.
Pitcher, S. A., Hoffmann, M. P., Gardner, J., Wright, M. G. and Kuhar, T. P. 2002. Cold storage of Trichogramma ostriniae reared on Sitotroga cerealella eggs. BioControl 47: 525-535.
Riahi, E., Fathipour, Y., Talebi, A. A. and Mehrabadi, M. 2016. Pollen quality and predator viability: life table of Typhlodromus bagdasarjani on seven different plant pollens and two-spotted spider mite. Systematic and Applied Acarology 21(10): 1399-1412.
Riddick, E. W. and Wu, Z. 2010. Potential long-term storage of the predatory mite Phytoseiulus persimilis. BioControl 55:  639-644.
Rivers, D. B., Lee, R. E. J. and Denlinger, D. L. 2000. Cold hardiness of the fly pupal parasitoid Nasonia vitripennis is enhanced by its host, Sarcophaga crassipalpis. Journal of Insect Physiology 46: 99-106.
Rojas, R. R. and Leopold, R. A. 1996. Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33: 447-458.
Rostami, N., Maroufpoor, M., Sadeghi, A., Mansour Ghazi, M. and Atlıhan, R. 2018. Demographic characteristics and population projection of Phytonemus pallidus fragariae reared on different strawberry cultivars. Experimental and Applied Acarology 76 (4): 473-486.
Tauber, M. J., Albuquerque, G. S. and Tauber, C. A. 1997. Storage of nondiapausing Chrysoperla externa adults: influence on survival and reproduction. Biological Control 10: 69-72.
Tezze, A. A. and Botto, E. N. 2004. Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae). Biological Control 30: 11-16.
Thorpe, K. W. and Aldrich, J. R. 2004. Conditions for short-term storage of field-collected spined soldier bug, Podisus maculiventris (Say) (Heteroptera: Pentatomidae), adults prior to augmentative release. Journal of Entomological Science 39: 483-489.
Urbanski, J. M., Aruda, A. and Armbruster, P. 2010. A transcriptional element of the diapause program in the Asian tiger mosquito, Aedes albopictus, identified by suppressive subtractive hybridization. Journal of Insect Physiology 56: 1147-1154.
van der Geest, L. P. S., Overmeer, W. P. J. and van Zon, A. Q. 1991. Coldhardiness in the predatory mite Amblyseius potentillae (Acari: Phytoseiidae). Experimental and Applied Acarology 11: 167-176.
van Lenteren, J. C. 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57: 1-20.
Zhang, Z. Q. 2003. Mites of greenhouses: identification, biology and control. CABI Publishing. CAB International. Wallingford. Oxon. UK.