اثرهای کشندگی و زیرکشندگی اسانس‌های درمنه‌ی خراسانی (Artemisia khorassanica)، زیره‌ی سیاه (Carum carvi) و فلفل سیاه (Piper nigrum) روی بید سیب‌زمینی، Phthorimaea operculella

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده‌ علوم کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه علوم گیاهی، دانشکده‌ کشاورزی و منابع طبیعی مغان،‌ دانشگاه محقق اردبیلی، ‌اردبیل، ایران

چکیده

در تحقیق حاضر اثرهای کشندگی و زیرکشندگی اسانس­ های گیاهان درمنه­ی خراسانی، زیره­ ی سیاه و فلفل سیاه روی تعدادی از پراسنجه ­های بید سیب­زمینی ارزیابی شد. غلظت­ های کشنده­ ی (LC50) اسانس ­ها روی حشره­ ی کامل آفت تعیین شدند. غلظت­های زیرکشنده­ی (LC20) اسانس­ ها موجب کاهش مقدار امید به زندگی (ex) و ایجاد تغییرات متفاوتی در نرخ زنده­ مانی (lx) و نرخ تولیدمثلی(vx) نسبت به شاهد شدند. اسانس­ درمنه ­ی خراسانی نسبت به دو اسانس دیگر به ­طور معنی ­داری باعث کاهش مقدارهای پراسنجه­ های رشد جمعیت مانند نرخ ناخالص تولیدمثل (GRR)، نرخ خالص تولیدمثل (R0)، نرخ ذاتی افزایش جمعیت (r)، نرخ متناهی افزایش جمعیت (λ) و افزایش در میانگین مدت زمان طول یک نسل (T) شد. اسانس درمنه­ ی خراسانی بیشترین تأثیر را روی پراسنجه­ های زیستی مانند طول دوره ­های لاروی، مراحل نابالغ، طول عمر ماده، تعداد تخم­ های گذاشته شده و درصد تفریخ آن­ها داشت. اسانس­ درمنه ­ی خراسانی باعث کاهش معنی ­داری در مقادیر ذخایر پروتئین (86/20 ± 2/489 میکروگرم بر شفیره)، لیپید (70/48 ± 4/812 میکروگرم بر شفیره) و گلیکوژن (51/5 ± 4/96 میکروگرم بر شفیره) شفیره­ ها در مقایسه با شاهد (به ­ترتیب 38/28 ± 8/606، 97/54 ± 8/941 و 09/15 ± 4/150 میکروگرم بر شفیره) شد. بررسی اجزای شیمیایی اسانس ­ها نشان داد که ترکیبات کامفور و 8،1- سینئول در درمنه‌ی خراسانی و 2- متیل-3- فنیل پروپان در زیره‌‌ی سیاه و فلفل سیاه بیشترین مقدار را داشتند. با توجه به اثرهای کشندگی و زیرکشندگی اسانس­ ها روی بید سیب­زمینی، انجام تحقیقات تکمیلی جهت مدیریت آفت پیشنهاد می­­­­­­­­­­­­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Lethal and sublethal effects of essential oils of Artemisia khorassanica Podi, Carum carvi L., and Piper nigrum L. on the potato tuber moth, Phthorimaea operculella (Zeller)

نویسندگان [English]

  • M. Nedaei 1
  • G. Nouri–Ganbalani 1
  • , H. Rafiee–Dastjerdi 1
  • A. Ebadollahi 2
1 Department of Plant Protection, College of Agricultural Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
2 Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

      In the present study, lethal and sublethal effects of essential oils of Artemisia khorassanica Podi, Carum carvi L. and Piper nigrum L. was assessed on number of parameters of Phthorimaea operculella (Zeller). The lethal concentrations (LC50) of essential oils were determined on the adults. Sublethal concentration (LC20) of essentials decreased the amount of life expectancy (ex), and showed different changes on the survival rate (lx) and reproductive value (vx) in comparison with the control. A. khorassanica essential oil in comparison with two the other essential oils decreased the population growth parameters such as gross reproduction rate (GRR), net reproduction rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) and increased the mean generation time (T) significantly. The essential oil of A. khorassanica had the most effective on biological parameters such as larval duration, immature stages, female longevity, the fecundity and fertility. The essential oil of A. khorassanica decreased the amounts of pupal protein (489.2 ± 20.86 µg/pupa), lipid (812.40 ± 48.70 μg/pupa) and glycogen (96.4 ± 5.51 µg/pupa) of pupae compared with the control (606.8 ± 28.38, 941.80 ± 54.97 and 150.40 ± 15.09 µg/pupa, respectively). Chemical composition analysis of the essential oils showed that camphor and 1,8-cineol in A. khorassanica and 2-methyl-3-phenyle propane in C. carvi and P. nigrum had the most amount. Considering the lethal and sublethal effects of essential oils, performing additional research achieving their application in the management of pest is recommended.
 

کلیدواژه‌ها [English]

  • Botanical essential oils
  • lethal effects
  • sub-lethal
  • Phthorimaea operculella
Abd El-Aziz, M. F. 2011. Bioactivities and biochemical effects of marjoram essential oil used against potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Life Science Journal 8: 288-297.
Adams, R. P. 2001. Identification of essential oil components by gas chromatography/mass spectroscopy. Carol Stream: Allured Publishing Co.
Bemani, M., Izadi, H., Mahdian, K., Khani, A. and Samih, M. A. 2012. Study on the physiology of diapause, cold hardiness and supercooling point of overwintering pupae of the pistachio fruit hull borer, Arimania comaroffi (Ragonot) (Lepidoptera: Pyralidae). Journal of InsectPhysiology 58: 897–902.
Ben Jemâa, J. M., Tersim, N., Toudert, K. T. and Khouj, M. L. 2012. Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. Journal of Stored Products Research 48: 97-104.
Borzoui, E., Naseri, B., Abedi, Z. and Karimi-Pormehr, M. S. 2016. Lethal and sublethal effects of essential oils from Artemisia khorassanica Podi and Vitex pseudo-negundo Against Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). Environmental Entomology 45: 1220-1226.
Cheng, S. S., Chua, M. T., Chang, E. H., Huang, C. G., Chen, W. J. and Chang, S. T. 2009. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica (L. f.)at different ages. Bioresource Technology 100: 465–70.
Chi, H. and Su, H. Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidea) and it's host Mysuz persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and their net reproductive rate. EnvironmentalEntomology 35: 10-21.
Chi, H. 2013. TWOSEX-MSChart: A computer program for the age-stage, two sex life. table analysis. http:// 140. 120. 197. 173/Ecology/.
Dogramaci, M. and Tingey, W. M. 2008. Comparison of insecticide resistance in a north American field population and laboratory colony of potato tuber moth (Lepidoptera: Gelechiidae). Journal of Pest Science 81: 17-22.
Ebadollahi, A. and Mahdavi, V. 2019. Insecticidal effects of Moldavian dragonhead, Dracocephalum ‎moldavica L. essential oil on the parasitoid wasp Habrobracon hebetor (Say) ‎and its hosts Anagasta Kuehniella (Lapsus) and Plodia interpunctella (Hubner). Plant Pest Research 9: 49-61‎.
Fan, L. S., Muhamad, R., Omar, D. and Rahmani, M. 2011. Insecticidal properties of Piper nigrum L. fruit extracts and essential oils against Spodoptera litura Fabricius. InternationalJournal of Agriculture and Biology 13: 517–522.
Fang, R., Jiang, C. H., Wang, X. Y., Zhang, H. M., Liu, Z. L., Zhou, L. and Du, S. S. 2010. Insecticidal activitis of essential oil of Carum carvi L. fruits from China and its main components against two grain storage insects. Molecules 15: 9391-9402.
Guerra, P. C., Molina, I. Y., Ya´ bar, E. and Gianoli, E. 2007. Oviposition deterrence of shoots and essential oils of Minthostachys spp. (Lamiaceae) against the potato tuber moth. Journal of Applied Entomology 131: 134-138.
Horgan, F. G., Quiring, D. T., Lagnaoui, A. and Pelletier, Y. 2007. Variable responses of tuber moth to the leaf trichomes of wild potatoes. The Netherlands Entomological Society 125: 1-12.
Isman, M. B. 2006. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51:45–66.
Isman, M. B. and Grieneisen, M. L. 2014. Botanical insecticide research: many publications, limited useful data. Trends in Plant Science 19: 140–145.
Izakmehri, K., Saber, M., Mehrvar, A., Hassanpouraghdam, M. B. and Vojoudi, S. 2013. Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis Dehn and Heracleum persicum Desf against the adults of Callosobruchus maculatus Fabricius. Journal of Insect Science 13: 152.
Khorrami, F., Rafiee –Dastjerdi, H., Hassanpour, M. and Esmaeilpour, B. 2014. The lethal and sub-lethal effect of essential oils of Lavandula angustifolia L. and Origanum vulgare Mill. on life table parameters of Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Agricultural Pest Management 1: 41-51. (in Farsi)    
Liedo, P., Carey, J. R. and Vargas, R. I. 1994. Mass rearing of fruit fliyes: A demographic analysis. In: Calkenis, C. O., Klassen, W., and Liedo, P. (eds): Fruit Fliyes and the Sterile Insect Technique. CRC Press, Boca Raton.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265–275.
Meyer, J. S., Igersoll, C. G., MacDonald, L. L. and Boyce, M. S. 1986. Estimating uncertainty in population growth rates: jackknife vs. bootstrap techniques. Ecology 67: 1156-1166.
Mohammad, A., Douches, D. S., Pett, W., Grafius, E., Coombs, J., Liswidowati, J., Madkour, M. A. and Li, W. 2000. Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry5 transgenic potato lines. Journal of Economic Entomology 93: 472-476.
Naghizadeh, S., Rafiee-Dastjerdi, H., Golizadeh, A., Esmaielpour, B. and Mahdavi, V. 2016. The effects of essential oils of Artemisia absinthium L., Achillea millefolium L. and Artemisia dracunculus L. against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Jordan Journal of Agricultural Sciences 12(4): 1115-1123.
Pruitt, N. L. and Lu, C. 2008. Seasonal changes in phospholipid class and class specific fatty acid ‎composition associated with the onset of freeze tolerance in third instar larvae of Eurostasolidaginis (Fitch). Physiologycal and Biochemical Zoology 81: 226–234.‎
Rafiee-Dastjerdi, H., Khorrami, F., Razmjou, J., Esmaielpour, B., Golizadeh, A. and Hassanpour, M. 2013. The efficacy of some medicinal plant extracts and essential oils against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Journal of Crop Protection 2: 93-99.
Regnault-Roger, C., Vincent, C. and Arnasson, J. T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology 57: 405–425.
Rinehart, J. P., Li, A., Yocum, G. D., Robich, R. M., Hayward, S. A. L. and Denlinger, D. L. ‎‎2007. Upregulation of heat shock proteins is essential for cold survival during insect diapause. ‎Proceeding of National Academy of Sciences of The United States of America 104: 11130–11137.‎
Rondon, S. I. 2010. The potato tuber worm: a literature review of its biology, ecology and control. American Journal of potato Research 87: 149-166.
SAS, 2003. A Guide to Statistical and Data Analysis. Version 9.1. SAS Institute, Cary.
SPSS, 2015. IBM Spss Statistics for windows, Version 24.0. Armonk, N Y: IBM Crop.
Symington, C. A. 2003. Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Journal of Crop Protection 22: 513-519.
Tayoub, G., Alorfi, M. and Ismail, H. 2019. Fumigate efficacy of Juniperus foetidissima (Willd) essential oil and two terpenes against Phthorimaea operculella (Zeller). Herba Polonica Journal 65(2): 14-21.
Upadhyay, R. K. and Jaiswal, G. 2007. Evaluation of biological activities of Piper nigrum L. oil against Tribolium castaneum. Bulletin of Insectology 60: 57-61.
Van Handel, E. 1985. Rapid determination of glycogen and sugars in mosquitoes. Journal of the American Mosquito Control Association 1: 299–301.
Vaneva-Gancheva, T. and Dimitrov, Y. 2013. Chemical control of the potato tuber moth Phthorimaea operculella (Zeller) on tobacco. Bulgarian Journal of Agricultural Science 19: 1003-1008.
Zeinalzadeh, L., Karimi-Malatti, A. and Sahvagard, A. 2016. Effect of four commercial barley varieties on life table parameters of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Journal of Crop Protection 52: 293-305.