اثرهای کشندگی و زیر‌کشندگی حشره‌کش‌های کرومافنوزاید، پیریدالیل و تیودیکارب روی زنبور پارازیتوئید Habrobracon hebetor

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران

2 مؤسسه‌ تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

زنبور Say Habrobracon hebetor، یکی از مهم­ ترین پارازیتوئیدهای لارو بسیاری از آفات بال‌پولک‌دار به‌ ویژه خانواده­ نوکتوئیده است. در این پژوهش، اثرهای کشندگی و زیرکشندگی حشره­کش­های کرومافنوزاید، پیریدالیل و تیودیکارب روی این زنبور پارازیتوئید در شرایط آزمایشگاهی مورد بررسی قرار گرفت. آزمایش ­های زیست­ سنجی به روش تماسی روی حشرات کامل و اثرهای زیرکشندگی به روش سم­ شناسی دموگرافیک انجام شد. بنا بر نتایج آزمایش­ های زیست­ سنجی، مقادیر LC30 برآورد­شده برای کرومافنوزاید و تیودیکارب به ترتیب 43/126 و 24/54  میلی­ گرم ماده­ مؤثر بر لیتر بود. از آن‌جا ‌که تا سه برابر غلظت مزرعه­ ای پیریدالیل (2250 میلی­ گرم ماده­ مؤثر بر لیتر) باعث حداکثر 19 درصد مرگ و میر روی حشره شد، مقدار LC30 برای این حشره‌ کش برآورد نشد. در آزمایش اثرهای زیرکشندگی حشره­ کش ­ها، زنبورهای ماده در معرض غلظت­ های LC30 کرومافنوزاید و تیودیکارب و غلظت مزرعه ­ای پیریدالیل (750 میلی ­گرم ماده­ مؤثر بر لیتر) قرار گرفتند. بنا بر نتایج این آزمایش، تیمارهای حشره­ کش در مقایسه با شاهد به ‌صورت معنی ­داری مدت زمان رشد و نمو مراحل مختلف زیستی، باروری و فراسنجه­ های جدول زیستی را تحت تأثیر قرار دادند. نرخ­ های ذاتی (r) و متناهی (λ) افزایش جمعیت در تیمارهای حشره­ کش در مقایسه با شاهد به ‌صورت معنی­ داری کاهش یافتند. در نهایت، نتایج نشان داد که تیودیکارب بیش­ترین میزان سمیت را روی حشرات کامل زنبور پارازیتوئید H. hebetor ایجاد کرد؛ درحالی­ که کرومافنوزاید و پیریدالیل اثرهای سوء کم‌تری روی زنبور داشتند. در صورت تأیید شدن نتایج این پژوهش پس از انجام آزمایش­ های مزرعه ­ای، امکان استفاده از پیریدالیل و کرومافنوزاید در برنامه­ های مدیریت تلفیقی آفت وجود خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Lethal and sub-lethal effects of insecticides chromafenozide, pyridalyl and thiodicarb on parasitoid wasp, Habrobracon hebetor

نویسندگان [English]

  • A. Mardani 1
  • Q. Sabahi 1
  • A. Sheikhi-Garjan 2
1 Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran
2 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

Habrobracon hebetor Say, is one of the most important larval parasitoids of many lepidopteran pests, particularly the family Noctuidae. In this study, the lethal and sub-lethal effects of chromafenozide, pyridalyl and thiodicarb, as insecticides, were investigated on this parasitoid under laboratory conditions. Bioassay tests on adults were conducted based on contact method and sub-lethal effects were done based on demographic toxicology. According to bioassay tests, estimated LC30 values for chromafenozide and thiodicarb were 126.43 and 54.24 mg a.i./L, respectively. Since even with the application of three times more than that of the field concentration of pyridalyl (2250 mg a.i./L), maximum mortality percentage of insects was 19%; LC30 value was not estimated for this insecticide. In order to assess sub-lethal effects of insecticides, female wasps were exposed LC30 values of chromafenozide and thiodicard and the field concentration of pyridalyl (750 mg a.i./L). According to sub-lethal tests, insecticide treatments significantly affected duration of life different, fecundity and life table parameters. The intrinsic (r) and finite (λ) rates of increase were significantly lower in insecticide treatments than that of control. Overall, results showed that thiodicarb had the highest toxicity effect on H. hebetor, while pyridalyl and chromafenozide had less adverse effects on this parasitoid. Following field experiments and subject to confirmation of the results of this study, it is possible to use pyridalil and chromafenozide in integrated pest management programs.

کلیدواژه‌ها [English]

  • Habrobracon hebetor
  • Biological parameters
  • Life-table
  • Integrated pest management
Backer, J. E. and Fabrick, J. A. 2000. Host hemolymph proteins and protein digestion in larval Habrobracon hebetor (Hym.: Braconidae). Insect Biochemistry and Molecular Biology 30: 937–946.
Biondi, A., Mommaerts, V., Smagghe, G., Vinuela, E., Zappala, L. and Desneux, N. 2012. The non-target impact of spinosyns on beneficial arthropods. Pest Management Science 68: 1523–1536.
Brunner, J. F., Dunley, J. E., Doerr, M. D. and Beers, E. H. 2001. Effect of pesticides on Colpoclypeus florus (Hymenoptera: Eulophidae) and Trichogramma platneri (Hymenoptera: Trichogrammatidae), parasitoids of leafrollers in Washington. Journal of Economic Entomology 94: 1075–1084.
Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology 17: 26–34.
Chi, H. 2020. TWOSEX-MS chart: a computer program for the age-stage, two sex life table analysis. Available from: http://140.120.197.173/Ecology/Download/ TwosexMSChart.zip.
Chi, H. and Liu, H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24: 225–240.
Desneux, N., Fauvergue, X., Dechaume Moncharmont, F. X., Kerhoas, L., Ballanger, Y. and Kaiser, L. 2005. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. Journal of Economic Entomology 98: 9–17.
Fathipour, Y. and Naseri, B. 2011. Soybean cultivars affecting performance of Helicoverpa armigera (Lepidoptera: Noctuidae). In Ng, T. B. (Ed.). Soybean-biochemistry, chemistry and physiology. Intechopen Press, Rijeka, Croatia. pp. 599–630.
Hamamura, T. and Shinoda, T. 2004. Selection of harmless pesticides to three predaceous mites. Proceedings of the Kansai Plant Protection Society 46: 63–65.
Han, P., Niu, C. Y. and Desneux, N. 2014. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt. cotton in central China. PLOS ONE 9(8): 1–9. http://doi.org/10.1371/journal.pone.0102980
IRAC. 2020. IRAC Mode of Action Classification Scheme. Version 9.4, IRAC International MoA Working Group, Insecticide Resistance Action Committee, 1–30 pp. Retrieved October 28, 2020. From http://www.irac-online.org.
Isayama, S., Saito, S., Kuroda, K., Umeda, K. and Kasamatsu, K. 2005. Pyridalyl, a Novel Insecticide: Potency and Insecticidal Selectivity. Archives of Insect Biochemistry and Physiology 58: 226–233.
Kandil, M. A., Mostafa, H. Z. and Hassan, K. A. 2018. The latent effect of chromafenozide on the reproductive and some biology aspects of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Egyptian Journal of Agricultural Research 96(4): 1335–1349.
Khan, R. R., Ashfaq, M., Ahmed, S. and Sahi, S. T. 2009. Mortality responses in Bracon hebetor Say (Braconidae) against some new chemistry and conventional insecticides under laboratory conditions. Pakistan Journal of Agricultural Sciences 46(1): 30–33.
Kohno, K., Takeda, M. and Hamamura, T. 2007. Insecticide susceptibility of a generalist predator Labidura riparia (Dermaptera: Labiduridae). Applied Entomology and Zoology 42: 501–505.
Mahdavi, V., Saber, M., Rafiee-Dastjerdi, H. and Mehrvar, A. 2011. Comparative study of the population level effects of carbaryl and abamectin on larval ectoparasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae). BioControl 56(6): 823–830.
Mardani, A., Sabahi, Q., Rasekh, A. and Almasi, A. 2016. Lethal and sublethal effects of three insecticides on the aphid parasitoid, Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae). Phytoparasitica 44(1): 91–98.
Mardani, A., Sabahi, Q., Rasekh, A. and Almasi, A. 2017. Susceptibility of pupal and adult stages of the parasitoid Lysiphlebus fabarum Marshall (Hym.: Braconidae) to insecticides thiacloprid+deltamethrin, pirimicarb and pymetrozine. Plant Pest Research 6(4): 61-71.
Moriya, K., Hirakura, S., Kobayashi, J., Ozoe, Y., Saito, S. and Utsumi, T. 2008. Pyridalyl inhibits cellular protein synthesis in insect, but not mammalian, cell lines. Archives of Insect Biochemstry and Physiology 69 (1): 22–31.
Nguyen, N. T. H., Borgemeister, C., Poehling, H. and Zimmermann, G. 2007. Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Science and Technology 17: 853–864.
Rafiee-Dastjerdi, H., Hejazi, M. J., Nouri-Ghanbalani, G. and Saber, M. 2009. Toxicity of some biorational and conventional insecticides to cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) and its ectoparasitoid, Habrobracon hebetor (Hymenoptera: Braconidae). Journal of Entomological Society of Iran 28: 27–37.
Rani, G., Gupta, N., Redhu, N. S. and Kumar, S. 2018. Ecdysone receptor present in insects is a novel target for insecticide. International Journal of Current Microbiology and Applied Sciences 7(5): 1548–1553.
Robertson, J. L., Russell, R. M., Preisler, H. K. and Savin, N. E. 2007. Bioassays with arthropods (2nded.). CRC press. Boca Raton. PP. 224.
Saber, M. and Abedi, Z. 2013. Effects of methoxyfenozide and pyridalyl on the larval ectoparasitoid Habrobracon hebetor. Journal of pest Science 86: 685–693.
Sakamoto, N., Saito, S., Hirose, T., Suzuki, M., Matsyo, S., Izumi, K., Nagatomi, T., Ikegami, H., Umeda, K., Tsushima, K. and Matsuo, N. 2004. The discovery of pyridalyl; a novel insecticidal agent for controlling lepidopterous pests. Pest Management Science 60: 25–34.
Sedaratian, A., Fathipour, Y. and Talaei-Hassanloui, R. 2014. Deleterious effects of Bacillus thuringiensis on biological parameters of Habrobracon hebetor parasitizing Helicoverpa armigera. BioControl 59(1): 89-98.
Singh, S. P., Ballal, C. R. and Poorani, J. 2002. Old world bollworm Helicoverpa armigera, associated Heliothinae and their natural enemies. Project Directorate of Biological Control, India.
SPSS. 2016. SPSS for windows. SPSS INC., Chicago, Illinois.
Stark, J. D., Banks, J. E., and Acheampong, S. 2004. Estimating susceptibility of biological control agents to pesticides: influence of life history strategies and population structure. Biological Control 29: 392–398.
Suh, C. P., Orr, D. B. and Duyn, J. W. V. 2000.Effect of insecticides on Trichogramma exiguum (Hymenoptera: Trichogrammatidae) preimaginal development and adult survival. Journal ofEconomic Entomology 93: 577–583.
Symington, C. A. 2003. Lethal and sublethal effects of pesticides on the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) and its parasitoid Orgilus lepidus Muesebeck (Hymenoptera: Braconidae). Crop Protection 22: 513–519.
Talebi-Jahromi, Kh. 2007. Pesticide toxicology (4th ed.). University of Tehran Publication, Iran. PP. 507. (In Farsi)
Tillman, P. G. and Mulrooney, J. E. 2000. Effect of selected insecticides on the natural enemies Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae), Geocoris punctipes (Hemiptera: Lygaeidae), and Bracon mellitor, Cardiochiles nigriceps, and Cotesia marginiventris (Hymenoptera: Braconidae) in cotton. Journal of Economic Entomology 93:1638–1643.
Wang, Y., Yu, R., Zhao, X., Chen, L., Wu, Ch., Cang, T. and Wang, Q. 2012. Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae)to selected insecticides with different modes of action. Crop Protection 34: 76–82.
Yanagi, M., Tsukamoto, Y., Watanabe, T. and Kawaghshi, A. 2006. Development of a novel lepidopteran insect control agent, chromafenozide. Journal of Pesticide Science 31: 163–164.