تأثیر قارچ بیمارگر Beauveria bassiana بر ترجیح و رفتار سویچینگ کنه شکارگر Phytoseiulus persimilis (Acari: Phytoseiidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه یاسوج، یاسوج، ایران

چکیده

کنه­ تارتن دولکه ­ای، Tetranychus urticae Koch، از جمله مهم­ ترین آفات گیاهی است که تکیه­ بیش از حد به سموم شیمیایی به­ منظور کنترل آن، عوارض جبران‌ناپذیر زیادی به­ دنبال داشته است. استفاده از دشمنان طبیعی روش مناسبی جهت کاهش تأثیر نامطلوب روش­ های قبلی تلقی می شود. در پژوهش حاضر، غلظت کشنده­ LC50 (107 × 3/1 اسپور/میلی‌لیتر) از جدایه­ MZ قارچ بیمارگر Beauveria bassiana (Bals.) Vuill. روی رفتارهای شکارگری انتخابی و غیرانتخابی، ترجیح تغذیه­ ای و سویچینگ کنه­ شکارگر Phytoseiulus persimilis Athias-Henriot با تغذیه از مراحل مختلف رشدی کنه تارتن دولکه ­ای (تخم، لارو، پروتونمف، دئوتونمف، بالغ نر و ماده) در شرایط آزمایشگاهی مورد مطالعه قرار گرفت. در آزمون شکارگری غیرانتخابی و در غیاب بیمارگر B. bassiana، بیش­ترین میزان تغذیه از مرحله‌ تخم طعمه مشاهده شد (57/0 ± 22/15 تخم). با حضور قارچ بیمارگر، بیش‌ترین میزان تغذیه روی لاروهای کنه‌ تارتن دولکه­ ای ثبت شد (64/0 ± 90/4 لارو). در آزمون شکارگری انتخابی و در نبود بیمارگر، بیش­ترین میزان تغذیه از مرحله­ تخم مشاهده شد (56/0 ± 75/14 تخم). در شرایط حضور بیمارگر نیز بیش‌ترین میزان تغذیه از لاروهای طعمه ثبت شد (53/0 ± 90/9 لارو). بیش­ترین مقدار محاسبه شده شاخص بتای منلی در شرایط عدم حضور قارچ بیمارگر B. bassiana روی مرحله تخم (03/0 ± 89/0) و پس از تیمار مراحل مختلف رشدی طعمه با استفاده از بیمارگر مورد مطالعه، روی مرحله لاروی مشاهده شد (05/0 ± 61/0). رفتار سویچینگ در کنه شکارگر P. persimilis در هر دو شرایط حضور و عدم حضور قارچ بیمارگر مشاهده نشد. نتایج حاصل از پژوهش حاضر مؤید آن است که در استفاده­‌ هم‌زمان دو عامل بیولوژیک باید توجه بیش‌تری به ارزیابی برهمکنش میان آن­ها معطوف شود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Beauveria bassiana on preference and switching behavior in Phytoseiulus persimilis (Acari: Phytoseiidae)

نویسندگان [English]

  • M. Zamanpour
  • A. Sedaratian-Jahromi
  • H. Mohammadi
  • M. Ghane-Jahromi
Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran
چکیده [English]

The two-spotted spider mite, Tetranychus urticae Koch, is one of the most important phytophagous pests where high reliance on chemical pesticides to subsidize its population density resulted in undesirable effects. The use of natural enemies could be considered promising in reducing the negative impacts of earlier methods. In the present study, the LC50 (1.3 × 107 spore/ml) of entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. (strain MZ) was used in on a choice and no-choice predation test, feeding preference and switching behavior of predatory mite Phytoseiulus persimilis Athias-Henriot feeding on different life stages of the two-spotted spider mite (egg, larvae, protonymph, deutonymph, adult male and adult female) in laboratory condition. According to results obtained, in no-choice test (i.e. without B. bassiana), the highest predation rate of predatory mite was observed to egg stage (15.22 ± 0.57 egg). In the test (with B. bassiana), the highest predation rate was recorded on the larvae of T. urticae (4.90 ± 0.64 larvae). In choice test (without B. bassiana), the highest predation was observed on egg stage (14.75 ± 0.56 egg). In the test (with B. bassiana), the highest predation was recorded on larvae (9.90 ± 0.53 larvae). The highest calculated value of Manly’s β index (without B. bassiana) was obtained on egg stage (0.89 ± 0.03). The estimated value of this parameter after treatment of different stages of prey with B. bassiana had the highest value on larval stage (0.61 ± 0.05). Switching behavior of P. persimilis was not observed in both with and without B. bassiana conditions. The present findings revealed that while using two natural enemies simultaneously, more attention should be devoted to evaluate their possible interactions.

کلیدواژه‌ها [English]

  • Interactions
  • natural enemies
  • foraging behaviors
  • Manly’s β index
Alipour, Z., Fathipour, Y. and Farazmand, A. 2016. Age-stage predation capacity of Phytoseiulus persimilis and Amblyseius swirskii (Acari: Phytoseiidae) on susceptible and resistant rose cultivars. International Journal of Acarology 42 (4): 224-228.
Bahari, F., Fathipour, Y., Talebi, A. A. and Alipour. Z. 2018. Long-term feeding on greenhouse cucumber affects life table parameters of two-spotted spider mite and its predator Phytoseiulus persimilis. Sysytematic and Applied Acarology 23 (12): 2304-2316.
Baverstock, J., Roy, H.E. and Pell, J. K. 2009. Entomopathogenic fungi and insect behavior: from unsuspecting hosts to targeted vectors. BioControl 55: 89-102.
Blackwood, J., Schausberger, P. and Croft, B. 2001. Prey-stage preference in generalist and specialist phytoseiid mites (Acari: Phytoseiidae) when offered Tetranychus urticae (Acari: Tetranychidae) eggs and larvae. Environmental Entomology 30: 1103-1111.
DeBach, P. 1964. Biological control of insect pests and weeds. Chapman and Hall/London.
Erler, F., Ates, A.O. and Bahar, Y. 2013. Evaluation of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, for the control of carmine spider mite, Tetranychus cinnabarinus (Boisduval) under greenhouse conditions. Egyptian Journal of Biological Pest Control 23: 233-240.
Escudero, L.A. and Ferragut, F. 2005. Life-history of predatory mites Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae) on four spider mite species as prey, with special reference to Tetranychus evansi (Acari: Tetranychidae). Biological Control 32: 378-384.
Fathipour, Y., Karimi, M., Farazmand, A. and Talebi, A. A. 2018. Age-specific functional response and predation capacity of Phytoseiulus persimilis (Phytoseiidae) on the two-spotted spider mite. Acarologia 58 (1): 31-40.  
Hajek, A. E. 2004. Natural enemies: an introduction to biological control. Cambridge University Press.
Heydari, S., Allahyari, H. and Zahedi Golpayegani, A. 2016. Prey preference and switching behavior of Amblyseius swirskii (Acari: Phytoseiidae) on greenhouse whitefly and two-spotted spider mite. Iranian Journal of Plant Protection Science 47: 139-150.
Jacobson, R. J., Chandler, D., Fenlon, J. and Russell, K. M. 2001. Compatibility of Beauveria bassiana (Balsamo) Vuillemin with Amblyseius cucumeris Oudemans (Acarina: Phytoseiidae) to control Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) on cucumber plants. Biocontrol Science and Technology 11: 391-400.
Jaworski, C. C., Bompard, A., Genies, L., Amiens-Desneux, E. and Desneux, N. 2013. Preference and prey switching in a generalist predator attacking local and invasive alien pests. Plos One 8(12): 1-10.
Khodayari, S., Fathipour, Y. and Sedaratian, A. 2016. Prey stage preference, switching and mutual interference of Phytoseius plumifer (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Systematic and Applied Acarology 21(3): 347-355.
Lucas, E., Coderre, D. and Vincent, C. 1997. Voracity and feeding preferences of two aphidophagous coccinellids on Aphis citricola and Tetranychus urticae. Entomologia Experimentalis et Applicata 85: 151-159.
Maleknia, B., Zahedi-Golpayegani, A., Farhoudi, F., Mirkhalilzadeh, S. R. and Allahyari, H. 2012. Effect of a heterospecific predator on the oviposition behavior of Phytoseiulus persimilis. Persian Journal of Acarology1(1): 17-24.
Manly, B. F. J., Miller, P. and Cook, L. M. 1972. Analysis of a selective predation experiment. American Naturalist 106: 719-736.
McMurtry, J. A., Moraes, G. J. D. and Sourassou, N. F. 2013. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Systematic and Applied Acarology 18: 297-320.
Meyling, N. V. and Pell, J. K. 2006. Detection and avoidance an entomopathogenic fungus by a generalist insect predator. Ecological Entomology31: 162-171.
Moradi, M., Hassanpour, M., Golizadeh, A. and Fathi, S. A. A. 2019. Prey preference and switching of the green lacewing Chrysoperla carnea on the citrus aphid Aphis spiraecola and the melon aphid Aphis gossypii. Plant Pest Research 8 (4): 43-54.
Murdoch, W. W. 1969. Switching in general predator specificity and stability of prey populations. Ecological Monographs 39: 335-354.
Murdoch, W.W. and Marks, J. 1973. Predation by coccinellid beetles: experiments on switching. Ecology 160-167.
Pilkington, L. J., Messelink, G., Van Lenteren, J. C., and Le Mottee, K. 2010. Protected biological control-biological pest management in the greenhouse industry. Biological Control 52: 216-220.
Pratt, P., Rosetta, R. and Croft, B. 2002. Plant-related factors influence the effectiveness of Neoseiulus fallacis (Acari: Phytoseiidae), a biological control agent of spider mites on landscape ornamental plants. Journal of Economic Entomology 95: 1135-1141.
Quesada-Moraga, E., Ruiz-García, A. and Santiago-Alvarez, C. 2006. Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology 99(6): 1955-1966.
Rashki, M. and Shirvani, A. 2013. The effect of entomopathogenic fungus, Beauveria bassiana on life table parameters and behavioural response of Aphis gossypii. Bulletin of Insectology 66(1): 85-91.
Rezaei, E., Sedaratian-Jahromi, A., Ghane-Jahromi, M. and Haghani, M. 2018. How sublethal concentrations of Bifenazate affect biological parameters of Tetranychus urticae (Acari: Tetranychidae) at laboratory conditions. Journal of Entomological Society of Iran 38(3): 345-359.
Sabelis, M. W. and Dicke, M. 1985. Long-range dispersal and searching behaviour. In Helle, W. and Sabelis, M. W. (Eds.). Spider mites: their biology, natural enemies and control. Elsevier, Amsterdam. pp. 141-160.
Sedaratian, A., Fathipour, Y. and Moharramipour, S. 2009. Evaluation of resistance in 14 soybean genotypes to Tetranychus urticae (Acari: Tetranychidae). Journal of Pest Science 82: 163-170.
Sedaratian, A., Fathipour, Y. and Moharramipour, S. 2011. Comparative life table analysis of Tetranychus urticae (Acari: Tetranychidae) on 14 soybean genotypes. Insect Science 18: 541-553.
Seiedy, M. 2015. Compatibility of Amblyseius swirskii (Acari: Phytoseiidae) and Beauveria bassiana for biological control of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Systematic and Applied Acarology 20: 731-738.
Seiedy, M. and Moezipour, M. 2017. The entomopathogenic fungus Beauveria bassiana and its compatibility with Phytoseiulus persimilis (Acari: Phytoseiidae): Effects on Tetranychus urticae (Acari: Tetranychidae). Persian Journal of Acarology 6(4): 329-338.
Seiedy, M., Saboori, A. and Zahedi-Golpayegani, A. 2013. Olfactory response of Phytoseiulus persimilis (Acari: Phytoseiidae) to untreated and Beauveria bassiana-treated Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 60: 219-227.
Seiedy, M., Saboori, A., Allahyari, H., Talaei-Hassanloui, R. and Tork, M. 2010. Laboratory investigation on the virulence of two isolates of the entomopathogenic fungus Beauveria bassiana against the twospotted mite Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology 36: 527-532.
Seiedy, M., Saboori, A., Allahyari, H., Talaei-Hassanloui, R. and Tork, M. 2012. Functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) on untreated and Beauveria bassiana - treated adults of Tetranychus urticae (Acari: Tetranychidae). Journal of Insect Behavior 25: 543-553.
Seyed-Talebi, S. F., Kheradmand, K., Talaei-Hassanloui, R. and Talebi-Jahromi, Kh. 2012. Sublethal effects of Beauveria bassiana on life table parameters of two–spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biocontrol Science and Technology 22(3): 293-303.
Sheng-Yong, W., Yu-Lin, G., Xue-Nong, X., Goettel, M. S. and Zhong-Ren, L. 2015. Compatibility of Beauveria bassiana with Neoseiulus barkeri for control of Frankliniella occidentalis. Journal of Integrative Agriculture 14(1): 98-105.
Sher, R. B. and Parrella, M. P. 1996. Integrated biological control of leafminers, Liriomyza trifolii, on greenhouse chrysanthemums. Bulletin OILB/SROP 19: 147-150.
Shi, W. B. and Feng, M. G. 2009. Effect of fungal infection on reproductive potential and survival time of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 48(3): 229-237.
Van der Geest L. P. S., Elliot, S. L., Breeuwr, J. A. J. and Beerling, E. A. M. 2000. Disease of mites. Experimental and Applied Acarology 24: 497-556.
Van Lenteren, J. C. and Woets, J. 1988. Biological and integrated pest control in greenhouses. Annual Review of Entomology 33: 239-269.
Van, H. V., Suk, I. H. and Keun, K. 2007. Selection of entomopathogenic fungi for aphid control. Journal of Bioscience and Bioengineering 104(6): 498- 505.
Walzer, A. and Schausberger, P. 1999. Cannibalism and interspecific predation in the phytoseiid mites Phytoseiulus persimilis and Neoseiulus californicus: predation rates and effects on reproduction and juvenile development.  Biological Control 43(4): 457-468.
Wang, J., Lei, Z. R., Xu, H. F., Gao, Y. L. and Wang, H. H. 2011. Virulence of Beauveria bassiana isolates against the first instar larvae of Frankliniella occidentalis and effects on natural enemy Amblyseius barkeri. Chinese Journal of Biological Control 27: 479-484.
Wu, S., Xing, Z., Sun, W., Xu, X., Meng, R. and Lei, Z. 2018. Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis. Journal of Invertebrate Pathology 153:  51-56.
Xiao, Y. and Fadamiro, H. Y. 2010. Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biological Control 53: 345-352.
Zhang, T., Reitz, S. R., Wang, H. and Lei, Zh. 2015. Sublethal effects of Beauveria bassiana (Ascomycota: Hypocreales) on life table parameters of Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology 108(3): 975-985.