واکنش تابعی و تداخل کنه شکارگر (Neoseiulus californicus (Acari: Phytoseiidae با تغذیه از لارو تریپس غربی گل روی چند رقم تجاری توت فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات جانورشناسی کشاورزی، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران ، ایران

2 گروه گیاه‌پزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

3 بخش تحقیقات حشره‌شناسی کشاورزی، موسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران ، ایران.

چکیده

کنه Neoseiulus californicusاز شکارگرهای موثر در کنترل کنه­ های تارتن است. واکنش تابعی ماده­ های جفت­گیری­ کرده سه روزه با تغذیه از تراکم­ های مختلف لارو تریپس Frankliniella occidentallis (1، 2، 4، 8 و 16) روی هفت رقم تجاری توت ­فرنگی (سیکوا، چاندلر، کامروسا، ماراک، آلیسو، یالوا و گاویتا) و تداخل شکارگری در تراکم­های (2،1، 4، 8 و 16) از کنه شکارگر در تراکم ثابت از شکار (40 عدد لارو تریپس) مطالعه شد. این آزمون­ ها روی دیسک ­های برگی در شرایط آزمایشگاهی (دمای1±27 درجه سلسیوس، رطوبت نسبی% 5±70 و دوره نوری 16 ساعت روشنایی و 8 ساعت تاریکی) بررسی شد. واکنش تابعی روی هفت رقم مورد آزمون از نوع دوم و آماره­ های واکنش تابعی با استفاده از معادله راجرز به­ دست آمد. قدرت جستجوگری و زمان دستیابی روی رقم­ های توت­ فرنگی، سیکوا (به ترتیب 01/0 بر ساعت، 77/4 ساعت)، چاندلر (03/0 بر ساعت، 37/4 ساعت)، کامروسا (03/0 بر ساعت، 49/5 ساعت)، ماراک (03/0 بر ساعت، 49/5 ساعت)، آلیسو (02/0 بر ساعت، 91/4 ساعت)، یالوا (05/0 بر ساعت، 54/4 ساعت) و گاویتا (02/0 بر ساعت، 65/4 ساعت) برآورد شد. توانایی کنه شکارگر در شکار لارو تریپس روی رقم­ چاندلر و یالوا بیشتر از سایر رقم­ ها بود. تراکم کمتر تریکوم روی این رقم­ ها نسبت به سایر رقم ­های مورد آزمون و ترکیبات شیمیایی ثانویه می ­تواند از دلایل این اختلاف باشد. ارتباط معنی­ داری بین لگاریتم تراکم شکارگر و لگاریتم قدرت جستجوی سرانه (محاسبه شده با معادله نیکلسون) وجود داشت. میزان شکارگری کنه شکارگر با افزایش تراکم تریپس و کاهش تراکم شکارگر افزایش می­یابد. نتایج اهمیت بررسی ویژگی­های گیاهان میزبان را در استفاده بهینه از کنه شکارگر در کنترل آفات نشان می ­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Functional response and predation interference of Neoseiulus californicus )Acari: Phytoseiidae) feeding on the western flower thrips larvae on several commercial strawberry cultivars

نویسندگان [English]

  • M. Rezaie 1 2
  • V. Baniamerie 3
  • A. Saboori 2
1 Zoology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO). Tehran, Iran|Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran
2 Zoology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO). Tehran, Iran|Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran
3 Agricultural Entomology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Organization (AREEO), Tehran, Iran.
چکیده [English]

   Neoseiulus californicus is an effective predatory mite to control of the spider mites. The functional response of three-day old mated female feeding on densities of Frankliniella occidentalis larvae (1,2,4,8 and 16) was studied on seven commercial strawberry cultivars (‘Sequoia’, ‘Chandler’, ‘Camarosa’, ‘Marak’, ‘Aliso’, ‘Yalova’ and ‘Gaviota’) and predation interference of this predator in (1,2,4,8 and 16) densities of the predatory mites on constant density of prey (40 larvae of thrips) were studied. These tests were conducted under laboratory condition (27±1˚C, 16L: 8D photoperiod and 70-80% RH). The predatory mite exhibited type Π on seven strawberry cultivars tested with Rogers equation. The attack coefficient and handling time were estimated on different strawberry cultivars (on ‘Sequioa (0.01, 4.77 hours), on ‘Chandler (0.03, 4.37 hours), ‘Camarosa’ (0.03, 5.49 hours), ‘Marak’ (0.03, 5.16 hours), ‘Aliso’ (0.02, 4.91 hours), ‘Yalova’ (0.05, 4.54 hours) and ‘Gaviota’ (0.02, 4.65 hours). The predatory mite ability in predation on F. occidentalis larvae on ‘Chandler’ and ‘Yalova’ were more than the other tested cultivars. It may be due to less trichome density on these cultivars or secondary chemical compounds. The relationship of logarithm of predator density and the logarithm of per capita searching efficiency was significant. The rate of predation increased as the host density increased and the predator decreased. These results emphasize the importance of the host plant characteristic for optimizing the predatory mite use in biological control of pests.

کلیدواژه‌ها [English]

  • Predatory mite
  • biological control
  • Phytoseiid mites
  • Western flower thrips
  • strawberry
Ahn, J. J., Kim, K. W. and Lee, J. H. 2009. Functional response of Neoseiulus californicus (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae) on strawberry leaves. Journal of Applied Entomology 134: 98–104.
Agrawal, A. A. 2000. Mechanisms, ecological consequence and agricultural implication of tri- trophic interactions. Current Opinion in Plant Biology 3: 329- 335.
Badii, M. H., Ortiz, E. H., Flores, A. E. and Landeros, J. 2004. Prey stage preference and functional response of Euseius hibisci to Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology 34: 263– 273.
Bottrell, D., Barbosa, P. and Gould, F. 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy. Annual Review of Entomology 43: 347–367.
Castagnoli, M. and Simoni, S. 1991. Influence of temperature on population increase of Amblyseius californicus (McGregor) (Acarina: Phytoseiidae). Redia 74: 621–640.
Castagnoli, M. and Simoni, S. 1999. Effect of long- term feeding history on functional and numerical response of Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 23: 217- 234.
Cedola, C. V., Sanchez, N. E. and Lijesthrom, G. 2001. Effect of tomato hairiness on functional and numerical response of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). Experimental Applied Acarology 25: 819-831.
Cho, J. J., Mau, R. F. L., Hamasaki, R. T. and Gonsalves, D., 1988. Detection of tomato spotted wilt virus in individual thrips by enzyme- linked immunosorbent assay. Phytopathology 78: 1348–1352.
Croft, B. A., Monetti, L. N. and Pratt, P. D. 1998. Comparative life histories and predation types: are Neoseiulus californicus and N. fallacies (Acari: Phytoseiidae) similar type II selective ality control of mass–reared arthropods: nutritional effects on performanance of predatory mites. Journal of Applied Entomology 108: 462-475.
Dalin, P., Agren, J., Bjorkman, C., Huttunen, P. and Karkkainen, K. 2008. Leaf trichome formation and plant resistance to herbivory. Heidelberg 89– 105.
Daughtrey, M. L., Jones, R. K., Moyer, J. W., Daub, M. E. and Baker, J. R. 1997. Tospoviruses strike the greenhouse industry. Plant Disease 81: 1220–1230.
de Clercq, P., Mohaghegh, J. and Tirry, L. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Hoteroptera: Pentatomidae). Biological Control  18: 460–470.
de Moraes, G. J., McMurtry, J. A., Denmark, H. A. and Campos, C. B. 2004. A revised catalog of the mite family Phytoseiidae.Magnolia Press. Auckland. 494 pp.
 Farazmand, A., Fathipour, Y. and Kamali, K. 2012. Functional response and mutual interference ofNeoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytoseiidae) in Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology 38(5): 369–376.
Farhadi, R., Allahyari, H. and Chi, C. 2015. Functional response and predation interference of Amblyseius swirskii (Acari: Phytoseiidae) feeding on Trialeurodes vapovariorum (Hemiptera: Aleyrodidae) on cucumber. Plant protection 38(2): 37–48.
Fathipour, Y., Dadpour Moghanloo, H. and Attaran, M. 2002. The effect of the type of laboratory host on functional response of Trichogramma pintoi Voegele (Hym: Trichogrammatidae). Journal of Agricultural Science and Natural Resources 9: 102–118.
Friese D. D. and Gilstrap F. E. 1982. Influence of prey availability on reproduction and prey consumption of Phytoseiulus persimilis, Amblyseius californicus, and Metaseiulus occidentalis (Acarina: Phytoseiidae). International Journal of Acarology 8: 85–89.
Hatherly, L. S., Bale, J. S. and Walters, K. F. A. 2005. Intraguild predation and feeding preferences in three species of phytoseiid mite used for biological control. Experimental and Applied Acarology 37: 43–55.
Hassell, M. P. and Varley, G. C. 1969. New inductive population model for insect parasites and its bearing on biological control. Nature 223: 1113-1137.
Laing J. E. and Osborn J. A. L. 1974. The effect of prey density on functional and numerical response of three species of predatory mites. Entomophaga 19: 267–277.
Lewis, T. 1997. Thrips as crop pests. CAB International. Wallingford. 740 pp.
Loughner, R., Goldman, K., Loeb, G. and Nyrop, J. 2008. Influence of leaf trichomes on predatory mitxp. (Typhlodromus pyri) abundance in grape varieties. Experimental and Applied Acarology 45: 111–122.
Jensen, S. E. 2000. Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Journal of Insect Science 5: 131–146.
Juliano, S. A. 2001. Nonlinear curve–fitting, predation and functional response curves. In: Scheiner, S. M., Gurevitch, J. (Eds.). Design and analysis of ecological experiment. Oxford University Press. New York. Pp178– 196.
Kostiainen, T. and Hoy, M. A. 1994. Egg-harvesting allows large scale rearing of Amblyseius finlandicus (Acari: Phytoseiidae) in the laboratory. Experimental and Applied Acarology 18: 155–165.
Koveos, D. S. and Broufas, G. D. 2000. Functional response of Euseius finlandicus and Amblyseius undersoni to Panonychus ulmi on apple and peach leaves in the laboratory. Experimental and Applied Acarology 24: 247–256.
Krips, O. E., Kleijn, P. W., Willems, P. E. L., Gols, G. I. Z. and Dicke, M. 1999. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology 23: 119–131.
Madadi, H., Enkegaard, A., Brodsgaard, H. F., Kharrazi -Pakdel, A., Mohaghegh, J. and Ashouri, A. 2007.Host plant effects on the functional response of Neoseiulus cucumeris to onion thrips larvae. Journal of Applied Entomology 131: 728–733.
Marafel, P. P., Reis, P. R., Silveira, E. C., Toledo, M. A. and Souza- Pimentel, G. C. 2011. Neoseiulus californicus preying in different life stages Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Acarologia51: 499– 506.
Messelink, G. J., van Steenpaal, S. E. F. and Ramakers, P. M. J. 2006. Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51: 753–768.
Messina, F. J. and Hanks, J. B. 1998. Host plant alters the shape of functional response of an aphid predator (Coloptera: Coccinellidae). Environmental Entomology 27: 1196– 1202.
Nachman, G. 2006. The effects of prey patchiness, predator aggregation, and mutualinterference on the functional response of Phytoseiulus persimilis feeding on Tetranychusurticae (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology 38: 87–111.
Nicholson, A. J. 1933. The balance of animal population. Journal of Animal Ecology 2: 131– 178.
Reis, P. R., Teodoro, A. V., Eto, M. V. and Silva, E. V. 2007. Life history of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) on coffee plants. Neotropical Entomology36: 282-287.
Rezaie, M. 2014. Interaction between the predatory mite, Neoseiulus californicus and Tetranychus urticae in presence of western flowerthrips on different commercial varieties of strawberry. Phd Thesis.University of Tehran. 275pp.
Rogers, D. J. 1972. Random search and insect population models. Journal of Animal Ecology 41: 369-383
SAS Inc. 2003. Version 9.1. SAS Institute Inc. Cary. Nc. USA.
Sabelis, M. W. and van de Baan, H. E. 1983. Location of distant spider mite colonies by phytoseiid predatores: demonstration of specific kairomones emitted by Teranychus urticae and Panonychus ulmi. Entomologia Experimentalis et Applicata 33: 303 –314.
Scott, A. S., Simmonds, M. S. J. and Blaney, W. M. 1999. Influence of species of host plants on the predation of thrips by Neoseiulus cucumeris, Iphiseius degenerans and Orius laevigatus. Entomologia Experimentalis et Applicata 92: 283–288.
Shipp, J. L. and Whitfield, G. H. 1991. Functional response of the predatory mite. Amblyseius cucumeris (Acari: Phytoseiidae), on western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Environmental Entomology 20: 694– 699.
Skirvin, D. J. and Fenlon, J. S. 2001. Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control. Bulletin of Entomological Research 91: 61–67.
Stobbs, L. W., Broadbent, A. B., Allen, W. R. and Stirling, A. L. 1992. Transmission of tomato spotted wilt by western flower thrips to weeds and native plants found in southern Ontario. Plant Disease 76: 13–29.
SPSS Inc. 2012. IBM SPSS Statistics for Windows, version 21.0. Armonk, NY, IBM Crop.
Timms, J. E., Oliver, T. H., Straw, N. A. and Leather, S. R. 2008. The effects of host plant on three coccinellid functional response. Is the conifer specialist Aphidecta obliterate (L.) (Coleoptera: coccinelidae) better adapted to spruce than the generalist Adatia bipunctat (L.) (Coloptera: Coccinelidae)? Biological Control  47: 273– 281.
Trexler, J. C., McCulloch, C. E. and Travis, J. 1988. How can the functional response best be determined? Oecologia 76: 206– 214.
Parrella, M. P. and Murphy, B. 1996. Western flower thrips: Identification, biology and research on the development of control strategies. Bulletin of the IOBC/WPRS 19: 115-118.
Pratt, P. D., Schausberger, P. and Croft, B. A. 1999. Prey-food types of Neoseiulus fallacis (Acari: Phytoseiidae) and literature versus experimentally derived prey-food estimates for five phytoseiid species. Experimental and Applied Acarology 23: 551–565.
Xiao, Y. and Fadamiro, H.Y. 2010. Functional responses and prey-stage preferences of three species of predacious mites (Acari: Phytoseiidae) on citrus red mite, Panonychus citri (Acari: Tetranychidae). Biological Control 53: 345–352.
Walde, S. 1995. How quality of host plant affects a predators-prey interaction in biological control. Ecology 76: 1206–1219.
Walter, D. E. 1996. Living on leaves: mites, tomato, leaf domatia. Annual Review of Entomology 41: 101–114.
Woets, J. 1973. Integrated control in vegetables under glass in the Netherlands. IOBC/WPRS Bulletin 4: 26–31.